(3.237.234.213) 您好!臺灣時間:2021/03/09 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬哈仕
研究生(外文):Mahesh Khatiwada
論文名稱:使用介面材料降低接觸熱阻之研究
論文名稱(外文):Investigation of Thermal Interface Materials to reduce contact resistance
指導教授:王啟川王啟川引用關係
指導教授(外文):Wang, Chi-Chuan
口試委員:王啟川劉耀先張瑞永
口試委員(外文):Wang, Chi-Chuan
口試日期:2019-04-15
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:63
中文關鍵詞:熱接觸電阻熱界面材料熱循環壓力表面粗糙度
外文關鍵詞:Thermal contact resistanceThermal Interface materialThermal cyclePressureSurface Roughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
用於快速,可靠和小型計算設備的現代技術的進步已導致每單位面積的高功率密度的發展。大部分熱量將使用各種散熱器消散。這些表面的不平整或粗糙提供了對從熱源到散熱器的熱流的阻力。由於表面粗糙度(稱為熱接觸電阻(TCR))導致的接觸電阻必須最小化,以便從熱源到散熱器的有效熱傳遞。在接觸表面之間使用熱界面材料(TIM)是降低熱接觸電阻的有效方法。表面粗糙度的降低顯著降低了接觸電阻。此外,研究了壓力和表面溫度對TCR的影響。它清楚地表明壓力和溫度的增加降低了TCR。減量取決於使用的​​TIM。熱循環負載的TCR變化也取決於Tim使用的。類似地,如果TIM在最大功率下熔化,則對電源變化的研究對TCR有影響。已經嘗試解決當使用熔化的TIM時滲出的問題。
Advancement of the modern generation for fast, reliable and small computing devices has led to development of high power density per unit area. Most of this heat is to be dissipated using the various heat sinks. The unevenness or roughness of these surfaces offer the resistance to the flow of heat from the heat source to heat sink. This resistance on the contact due the roughness of the surface known as Thermal Contact Resistance (TCR) has to be minimized for effective heat transfer from heat source to heat sink. Using Thermal Interface Material (TIM) between the contact surfaces has been the effective way to reduce the thermal contact resistance. Decrease of surface roughness significantly reduces the contact resistance. Moreover, study on effect of pressure and surface temperature on TCR was performed. It clearly indicates increase of pressure and temperature decreases TCR. The decrement depends on the TIM used. TCR variation on Thermal cycling loading also depends on the Tim used. Similarly study of variation of power supply has effect on the TCR if the TIM melts on the maximum power. An attempt has been made to address the problem of oozing out when TIM that melts is used.
ABSTRACT i
ACKNOWLEDGEMENT iii
LIST OF FIGURES vi
LIST OF TABLES viii
NOMENCLATURE viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Thermal contact resistance 1
1.3 Thermal interface materials 3
1.3.1 Thermal Grease 4
1.3.2 Phase Change materials 5
1.3.3 Thermally Conductive Elastomers (Gels) 6
1.3.4 Carbon Based TIMs 6
1.4 Objectives of present study 7
Chapter 2 Literature Review 8
2.1 Solid-Solid Interface Thermal Contact Resistance Modelling 12
2.1.1 Plastic Contact Conductance Model 14
2.1.2 Elastic Contact Conductance Model 15
2.1.3 Bulk Resistance Method 16
2.2 Solid Liquid Interaction Contact Resistance Model 18
Chapter 3 Experimental Apparatus And Procedures 22
3.1 Experimental Method 22
3.2 Test Piece 23
3.3 Thermal Interface Materials 29
3.4 Experimental Schematic and Setup assembly 30
3.4.1 DC Power Supply 33
3.4.2 Water Bath 34
3.4.3 Data Acquisition System 35
3.4.3 Load cell 36
3.5 Experimental Procedure 36
3.6 Data Reduction 37
Chapter 4 Results and Discussions 39
4.1 Effect of Pressure on Thermal Contact Resistance 39
4.2 Effect of Brinell hardness of TIM on Thermal Contact Resistance 44
4.3 Effect of temperature on thermal contact resistance 45
4.4 Effect of roughness on contact resistance 46
4.5 Effect of Thermal cycle loading 48
4.6 Effect of Pattern of Power Supply 52
Chapter 5 Conclusions and Future Works 55
5.1 Conclusions 55
5.2 Future Works 56
Reference 57
Appendix A 61
Appendix B 62
1. Bowden, F.P.a.T., The Friction and Lubrication of Solids. D., Oxford University Press, London, 1950.
2. Nilsson, A.K.H.a.U.E., Thermal Contact Conductance in Bolted Joints. 2012.
3. Mikic B. B., a.R.W.M., Thermal Contact Conductance. Tech. Rep., Dept. of Mech. Eng. MIT, Cambridge, MA,, 1966(22-009-065).
4. Majid Bahramic, M.M.Y., Thermal Contact Resistance at Low Contact Pressure: Effect of Elastic Deformation. Journal of Heat and Mass Transfer (48 92005).
5. Zhang, D.L.J., Numerical Simulation of High-Temperature Thermal Contact Resistance and its Reduction Mechanism. Open Source.
6. D.V. Lewis, H.C.P., Heat Transfer at the Interface of Stainless Steel and Aluminum. Int. J. Heat Mass Transfer, 1968.
7. Fletcher, L.S., Recent Developments in Contact Conductance Heat Transfer. J. Heat Transfer, 1988.
8. M.J. Edmonds, A.M.J., S.D. Probert, Thermal Contact Resistances for Hard Machined Surfaces pressed against Relatively Soft-Optical Flats. Applied Energy 6 1980.
9. R.R. Somers, J.W.M., L.S. Fletcher, An Experimental Investigation of the Thermal Conductance of Dissimilar Metal Contacts. 4th Intersociety Conference on Thermal Phenomena in Electronic Systems, Washington, May, 1994.
10. Yovanovich, M.M., Overall Constriction Resistance between Contacting Rough, Wavy Surfaces. Int. J. Heat Mass Transfer, 1969.
11. Riese, D.R., Heatsink Attachment and Thermal Interface Effects on Production Assembly and Repair. Electronics Cooling May 2009.
12. L.R. Jeevanashankara, C.V.M., M.V. Kulkarni, , Thermal Contact Conductances of Metallic Contacts at Low Loads. Applied Energy 1990.
13. Prasher, R., Surface Chemistry and Characteristic based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials. Journal of Heat Transfer, 2001.: p. 969-975.
14. Touloukian, Y.S., Powell, R. W., Ho, C. Y., and Klemens, P. G., , Thermal Conductivity: Nonmetallic Solid, Thermophysical Properties of Matter. Plenum, NY, 1970.
15. ASTM D 5470 Method.
16. F. P., a.D.D.P., Fundamentals of Heat and Mass Transfer. Incropera Wiley, NY, 1996.
17. Heremans, J., and Beetz, C. P. Jr, Thermal Conductivity and Thermopower of Vapor-grown Graphite Fibers. Phys. Rev. B, 1985.
18. K Goodarzi, S.R., Reducing Thermal contact Resistance using nano coating. Applied Thermal Engineering.
19. Timothy Fisher, J.X., Enhancement of thermal interface materials with carbon nanotube arrays. Birck and NCN Publications.
20. Qiang Lv, X.H., Xiqu Chen, Zhiyin Gan, , Reducing Thermal Contact Resistance using Thermocompression Method to bond Vertically Aligned Carbon Nanotubes in Magnetic Field. Proceedings of the Institution of Mechanical Engineers Part N Journal of Nanoengineering and Nanosystems 2014.
21. Richard F. Hill, J.L.S., Practical Utilization of Low Melting Alloy Thermal Interface Materials. Larid Technologies.
22. Yovanovich, M.M., Culham, J.R. and Teertstra,, Calculating Interface Resistance Electronics-Cooling Article3.html, 1997.
23. Savija, J.R.C., M.M. Yovanovich, Effective Thermophysical Properties of Thermal Interface Material : PART I Definations and Models. Proceedings of IPACK03, 2003.
24. Cooper M.G., M.B.B.a.Y.M.M., Thermal Contact Conductance. International Journal of Heat and Mass Transfer, 1969: p. 279-300.
25. Yovanovich, M.M., New Contact and Gap Conductance Correlations for Conforming Rough Surfaces. 16th Thermophysics Conference, 1981.
26. MM, S.S.a.Y., Relative Contact Pressure: Dependence Upon Surface Roughness and Vickers Microhardness. AIAA Journal of Thermophysiscs and Heat Transfer, 1988: p. 43-47.
27. Yovanovich, S.a., Empirical Methods to Predict Vickers Microhardness. WEAR, 1996.: p. 91-98.
28. Mikic, B.B., Thermal Contact Conductance;Theoretical Consideration. International
Journal of Heat and Mass Transfer, 1974: p. 205-214.
29. Chao Yuan, B.D., Lan Li, Bofeng Shang, Xiaobing Luo, An Improved Model for Predicting Thermal Contact Resistance at Liquid–Solid Interface. International Journal of Heat and Mass Transfer, 2015.
30. A.Hamasaiidab, M.S.D., T.Loulouc, G.Doura, A Predictive Model for the Thermal Contact Resistance at Liquid–Solid Interfaces: Analytical Developments and Validation. International Journal of Thermal Sciences, 2011.: p. 1445-1449.
31. Xiao Ma, J.A.K.a.C.A.R., Experimental Investigation of Contact Resistance across pressed Lead and Aluminium Contact in Vacuum Environment. ASME Iinternational Mechanical Engineering Conference, 2000.
32. Madhusudana, C.V., and Williams, A. , Heat Flow Through Metallic Contacts-The Influence of Cycling the Contact Pressure. 1st Australian Conf on Heat Mass Transfer, 1973: p. 33-40.
33. Kuniya Azuma , T.H., Shinji Nakagawa, Measurement of Surface Roughness Dependence of Thermal Contact Resistance under Low Pressure Condition. International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 2015.
34. Loulou T., A.E.A., and Bardon J.P., Estimation of Thermal Contact Resistance during the First Stages of Metal Solidification Process: I - Experiment Principle and Modelisation. International Journal ofHeat & Mass Transfer, 1999.: p. 2119-2127.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔