跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡歆哲
研究生(外文):Chien, Hsin-Che
論文名稱:單根尼龍六奈米纖維熱傳導率與退火時間及分子量之關係
論文名稱(外文):The Dependence of the Thermal Conductivity of the Nylon-6 Nanofiber on the Molecular Weight and Annealing Time
指導教授:呂明璋
指導教授(外文):Lu, Ming-Chang
口試委員:王建隆張瑞永
口試委員(外文):Wang, Chien-LungChang, Jui-Yung
口試日期:2019-07-22
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:無定形聚合物尼龍奈米纖維熱傳導率物理老化
外文關鍵詞:amorphous polymernylonnanofiberthermal conductivityphysical aging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究單根尼龍六奈米纖維熱傳導率與退火時間與分子量之關係。在此研究中,我們先透過微機電製程製作出一塊微米元件結構,並架設一套低溫真空系統以量測尼龍六奈米纖維之熱傳導率。實驗結果發現熱傳導率會隨著退火時間變化,當在120 K退火9728分鐘時,熱傳導率從0.27  0.02 提升至 12.12 ± 0.81 W/m-K,其熱傳導率有40倍的上升,尼龍六奈米纖維在低溫退火時熱傳導率提升的原因來自於,尼龍六本身是一種半結晶的高分子材料,而我們的尼龍六奈米纖維樣品內部佔有大量的非晶相型態區域,比例約為80%,這使得尼龍六熱傳導率不僅與溫度有關,而且與時間相關。在1959年Kawaguchi利用動態黏彈性機械分析尼龍材料,發現尼龍六分別約在350 K、230 K、150 K存在α、β、γ轉換溫度,α轉換溫度也是玻璃轉換溫度(glass transition temperature),當溫度高於350 K時,會打斷非晶相區域裡氫鍵的鍵結,分子鏈會開始做大範圍的運動,而造成內部分子型態有巨大的改變;當溫度高於β轉換溫度時則在非晶相區域未鍵結之醯胺基團(amide group)區域,將會做局部的運動(segmental motion);當溫度高於γ轉換溫度時則在非晶相區域裡分子鏈中的-CH_2-區域,開始有足夠的能量進行運動,稱此運動為曲軸型運動(Crankshaft motion),但是當溫度低於150 K時分子鏈沒有足夠能量進行運動,分子鏈變成凍結狀態。因此分子鏈會隨著在低溫持續的時間愈久而排列得越緊密,造成熱傳導率隨時間增加而上升。同時我們也製備了三種不同分子量的樣品實驗,分子量分別為4.165  104  1722、2.593  104  462、6.47  103  386 Dalton,結果發現熱傳導率與分子量有正相關,其原因為當分子量越大尼龍六奈米纖維內部的聚合物鏈也越長,當聚合物鏈越長,熱也更容易透過尼龍六奈米纖維傳導。
The purpose of this work is to study the dependence of the thermal conductivity of the nylon-6 nanofibers on the annealing time and molecular weight. In this study, microdevices were made by the microelectromechanical process to measure the thermal conductivities of nylon-6 nanofibers. The experimental results showed that the thermal conductivity of the nanofibers was dependent on the annealing time and molecular weight. The thermal conductivity of the nanofiber increased from 0.27  0.02 to 12.12 ± 0.81 W/m-K by annealing the nanofiber at 120 K for 9728 min. The reason why the thermal conductivity of nylon-6 nanofibers enhanced during the low-temperature annealing process was because of that the nylon-6 nanofiber was a semi-crystalline material, which contained approximately 80% amorphous regions. In 1959, Kawaguchi analyzed the dynamic viscoelastic properties of nylon materials. He found that the nylon 6 has α, β, γ transition temperatures at 350, 230, and 150 K, respectively. The α-transition is also called the glass transition temperature. When the temperature is higher than 350 K, the hydrogen bonds in the amorphous regions breaks and the molecular chains start to carry out a wide range of movements. The β-transition temperature occurs at 230 K. When the temperature is higher than the β-transition temperature, the segmental motion of the un-bonded amide groups in the amorphous regions will be active. The γ-transition temperature occurs at 150 K. When the temperature is higher than the γ-transition temperature, the -CH2- groups in the molecular chains in the amorphous regions start to perform the crankshaft motion. On the other hand, when the temperature is lower than 150 K, the molecular chains do not have the enough energy and become frozen. When annealing the nylon-6 nanofibers at a temperature below 150 K, the crankshaft motion was frozen. In addition, the molecular chains were getting closer during the annealing process to reduce the free energy of the polymer. Thus, the thermal conductivity of the nylon-6 nanofibers increased with the annealing time. The nylon-6 nanofibers with three different molecular weights of 4.165  104  1722, 2.593  104  462, 6.47  103  386 Dalton were also prepared to investigate the effect of molecular weight on the thermal conductivity of the nanofibers. It was found that the thermal conductivity was positively correlated with the molecular weight, which was because of that the nylon-6 nanofiber with a larger the molecular weight possessed a longer polymer chain. As the length of the polymer chain increased, heat transfer in the polymer chain was presumed to more effective.
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究目的 3
第2章 量測原理與樣品製作 7
2.1 量測原理 7
2.2 微元件製作方式 11
2.3 尼龍六奈米纖維樣品製備 11
2.4 尼龍六順向性薄膜製備 12
2.5 實驗系統與量測步驟 13
第3章 實驗系統靈敏度與誤差分析 26
3.1 實驗系統靈敏度 26
3.2 熱輻射散失誤差 28
3.3 接觸熱阻分析 29
第4章 實驗結果 32
4.1 尼龍六內部結構分析 32
4.1.1 結晶度 32
4.1.2 分子鏈順向性 32
4.1.3 分子量 35
4.2 藉由二氧化矽奈米線和矽奈米線驗證系統量測準確性 35
4.3 尼龍六奈米纖維之熱傳導量測流程 36
4.3.1 系統與各樣品熱傳導係數之結果 36
4.3.2 尼龍六奈米纖維之熱傳導率的量測結果 37
4.3.3 藉由矽奈米線量測驗證尼龍六奈米纖維熱傳導率可信度 40
第5章 結論與未來工作 62
5.1 結論 62
5.2 未來工作 63
5.2.1 不同聚合物材料研究 63
[1] Sperling, L.H., Introduction to Polymer Science, in Introduction to Physical Polymer Science. 2005, John Wiley & Sons, Inc. p. 1-28.
[2] Choy, C.L., Y. Fei, and T.G. Xi, Thermal conductivity of gel‐spun polyethylene fibers. Journal of Polymer Science Part B: Polymer Physics, 1993. 31(3): p. 365-370.
[3] Hiroyuki, F., et al., Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers. Japanese Journal of Applied Physics, 1997. 36(9R): p. 5633.
[4] Shen, S., et al., Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010. 5: p. 251.
[5] Huang, X., G. Liu, and X. Wang, New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching. Advanced Materials, 2012. 24(11): p. 1482-1486.
[6] Wang, X., et al., Thermal Conductivity of High-Modulus Polymer Fibers. Macromolecules, 2013. 46(12): p. 4937-4943.
[7] Choy, C.L., et al., Elastic modulus and thermal conductivity of ultradrawn polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(23): p. 3359-3367.
[8] Washo, B.D. and D. Hansen, Heat Conduction in Linear Amorphous High Polymers: Orientation Anisotropy. Journal of Applied Physics, 1969. 40(6): p. 2423-2427.
[9] Hansen, D. and G.A. Bernier, Thermal conductivity of polyethylene: The effects of crystal size, density and orientation on the thermal conductivity. Polymer Engineering & Science, 1972. 12(3): p. 204-208.
[10] Gibson, A.G., et al., Thermal conductivity of ultrahigh‐modulus polyethylene. Journal of Polymer Science: Polymer Letters Edition, 1977. 15(4): p. 183-192.
[11] Choy, C.L. and D. Greig, The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate. Journal of Physics C: Solid State Physics, 1975. 8(19): p. 3121.
[12] Liu, J. and R. Yang, Tuning the thermal conductivity of polymers with mechanical strains. Physical Review B, 2010. 81(17): p. 174122.
[13] Liu, J. and R. Yang, Length-dependent thermal conductivity of single extended polymer chains. Physical Review B, 2012. 86(10): p. 104307.
[14] Luo, T., et al., Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane. Journal of Applied Physics, 2011. 109(7): p. 074321.
[15] Pal, S., G. Balasubramanian, and I.K. Puri, Reducing thermal transport in electrically conducting polymers: Effects of ordered mixing of polymer chains. Applied Physics Letters, 2013. 102(2): p. 023109.
[16] Zhang, T. and T. Luo, Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. Journal of Applied Physics, 2012. 112(9): p. 094304.
[17] Zhang, T. and T. Luo, High-Contrast, Reversible Thermal Conductivity Regulation Utilizing the Phase Transition of Polyethylene Nanofibers. ACS Nano, 2013. 7(9): p. 7592-7600.
[18] David, H. and H.C. C., Thermal conductivity of high polymers. Journal of Polymer Science Part A: General Papers, 1965. 3(2): p. 659-670.
[19] Wu, P.-H., Thermal Conductivity of a Single Nylon-6 Nanofiber, in Master's Thesis of Department of Mechanical Engineering. 2014, Hsinchu: National Chiao Tung University. p. 51.
[20] Shi, L., et al., Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. Journal of Heat Transfer, 2003. 125(5): p. 881-888.
[21] Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 2008. 49(10): p. 2387-2425.
[22] Li, D., Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer‐by‐Layer Stacked Films. Advanced Materials, 2004. 16(4): p. 361-366.
[23] Yu, C., et al., Thermal contact resistance and thermal conductivity of a carbon nanofiber. Journal of heat transfer, 2006. 128(3): p. 234-239.
[24] Bahadur, V., et al., Thermal Resistance of Nanowire-Plane Interfaces. Journal of Heat Transfer, 2005. 127(6): p. 664-668.
[25] Prasher, R., Predicting the Thermal Resistance of Nanosized Constrictions. Nano Letters, 2005. 5(11): p. 2155-2159.
[26] Saito, T., et al., Improved contact for thermal and electrical transport in carbon nanofiber interconnects. Applied Physics Letters, 2008. 93(10): p. 102108.
[27] Fornes, T.D. and D.R. Paul, Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003. 44(14): p. 3945-3961.
[28] Liu, Y., et al., Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers. Macromolecules, 2007. 40(17): p. 6283-6290.
[29] Nam, K.-T., et al., Solvent degradation of nylon-6 and its effect on fiber morphology of electrospun mats. Polymer Degradation and Stability, 2011. 96(11): p. 1984-1988.
[30] Kwon, S., et al., Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures. ACS Nano, 2017. 11(3): p. 2470-2476.
[31] Lu, M.-C., et al., Critical heat flux of pool boiling on Si nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 2011. 54(25): p. 5359-5367.
[32] Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451: p. 163.
[33] Cahill, D.G. and R.O. Pohl, Thermal conductivity of amorphous solids above the plateau. Physical Review B, 1987. 35(8): p. 4067-4073.
[34] Kawaguchi, T., The dynamic mechanical properties of nylons. Journal of Applied Polymer Science, 1959. 2(4): p. 56-61.
[35] Boyd, R.H. and S.M. Breitling, The Conformational Analysis of Crankshaft Motions in Polyethylene. Macromolecules, 1974. 7(6): p. 855-862.
[36] Greiner, R. and F.R. Schwarzl, Volume relaxation and physical aging of amorphous polymers I. Theory of volume relaxation after single temperature jumps. Colloid and Polymer Science, 1989. 267(1): p. 39-47.
[37] Murphy, D.M. and T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 2005. 131(608): p. 1539-1565.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top