|
[1] Sperling, L.H., Introduction to Polymer Science, in Introduction to Physical Polymer Science. 2005, John Wiley & Sons, Inc. p. 1-28. [2] Choy, C.L., Y. Fei, and T.G. Xi, Thermal conductivity of gel‐spun polyethylene fibers. Journal of Polymer Science Part B: Polymer Physics, 1993. 31(3): p. 365-370. [3] Hiroyuki, F., et al., Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers. Japanese Journal of Applied Physics, 1997. 36(9R): p. 5633. [4] Shen, S., et al., Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010. 5: p. 251. [5] Huang, X., G. Liu, and X. Wang, New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and Its Abnormal Change under Stretching. Advanced Materials, 2012. 24(11): p. 1482-1486. [6] Wang, X., et al., Thermal Conductivity of High-Modulus Polymer Fibers. Macromolecules, 2013. 46(12): p. 4937-4943. [7] Choy, C.L., et al., Elastic modulus and thermal conductivity of ultradrawn polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(23): p. 3359-3367. [8] Washo, B.D. and D. Hansen, Heat Conduction in Linear Amorphous High Polymers: Orientation Anisotropy. Journal of Applied Physics, 1969. 40(6): p. 2423-2427. [9] Hansen, D. and G.A. Bernier, Thermal conductivity of polyethylene: The effects of crystal size, density and orientation on the thermal conductivity. Polymer Engineering & Science, 1972. 12(3): p. 204-208. [10] Gibson, A.G., et al., Thermal conductivity of ultrahigh‐modulus polyethylene. Journal of Polymer Science: Polymer Letters Edition, 1977. 15(4): p. 183-192. [11] Choy, C.L. and D. Greig, The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate. Journal of Physics C: Solid State Physics, 1975. 8(19): p. 3121. [12] Liu, J. and R. Yang, Tuning the thermal conductivity of polymers with mechanical strains. Physical Review B, 2010. 81(17): p. 174122. [13] Liu, J. and R. Yang, Length-dependent thermal conductivity of single extended polymer chains. Physical Review B, 2012. 86(10): p. 104307. [14] Luo, T., et al., Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane. Journal of Applied Physics, 2011. 109(7): p. 074321. [15] Pal, S., G. Balasubramanian, and I.K. Puri, Reducing thermal transport in electrically conducting polymers: Effects of ordered mixing of polymer chains. Applied Physics Letters, 2013. 102(2): p. 023109. [16] Zhang, T. and T. Luo, Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. Journal of Applied Physics, 2012. 112(9): p. 094304. [17] Zhang, T. and T. Luo, High-Contrast, Reversible Thermal Conductivity Regulation Utilizing the Phase Transition of Polyethylene Nanofibers. ACS Nano, 2013. 7(9): p. 7592-7600. [18] David, H. and H.C. C., Thermal conductivity of high polymers. Journal of Polymer Science Part A: General Papers, 1965. 3(2): p. 659-670. [19] Wu, P.-H., Thermal Conductivity of a Single Nylon-6 Nanofiber, in Master's Thesis of Department of Mechanical Engineering. 2014, Hsinchu: National Chiao Tung University. p. 51. [20] Shi, L., et al., Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. Journal of Heat Transfer, 2003. 125(5): p. 881-888. [21] Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 2008. 49(10): p. 2387-2425. [22] Li, D., Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer‐by‐Layer Stacked Films. Advanced Materials, 2004. 16(4): p. 361-366. [23] Yu, C., et al., Thermal contact resistance and thermal conductivity of a carbon nanofiber. Journal of heat transfer, 2006. 128(3): p. 234-239. [24] Bahadur, V., et al., Thermal Resistance of Nanowire-Plane Interfaces. Journal of Heat Transfer, 2005. 127(6): p. 664-668. [25] Prasher, R., Predicting the Thermal Resistance of Nanosized Constrictions. Nano Letters, 2005. 5(11): p. 2155-2159. [26] Saito, T., et al., Improved contact for thermal and electrical transport in carbon nanofiber interconnects. Applied Physics Letters, 2008. 93(10): p. 102108. [27] Fornes, T.D. and D.R. Paul, Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003. 44(14): p. 3945-3961. [28] Liu, Y., et al., Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers. Macromolecules, 2007. 40(17): p. 6283-6290. [29] Nam, K.-T., et al., Solvent degradation of nylon-6 and its effect on fiber morphology of electrospun mats. Polymer Degradation and Stability, 2011. 96(11): p. 1984-1988. [30] Kwon, S., et al., Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures. ACS Nano, 2017. 11(3): p. 2470-2476. [31] Lu, M.-C., et al., Critical heat flux of pool boiling on Si nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 2011. 54(25): p. 5359-5367. [32] Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451: p. 163. [33] Cahill, D.G. and R.O. Pohl, Thermal conductivity of amorphous solids above the plateau. Physical Review B, 1987. 35(8): p. 4067-4073. [34] Kawaguchi, T., The dynamic mechanical properties of nylons. Journal of Applied Polymer Science, 1959. 2(4): p. 56-61. [35] Boyd, R.H. and S.M. Breitling, The Conformational Analysis of Crankshaft Motions in Polyethylene. Macromolecules, 1974. 7(6): p. 855-862. [36] Greiner, R. and F.R. Schwarzl, Volume relaxation and physical aging of amorphous polymers I. Theory of volume relaxation after single temperature jumps. Colloid and Polymer Science, 1989. 267(1): p. 39-47. [37] Murphy, D.M. and T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 2005. 131(608): p. 1539-1565.
|