(3.95.139.100) 您好!臺灣時間:2020/01/24 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:簡呈勳
研究生(外文):Chien, Cheng-Hsun
論文名稱:開發有機陽離子於穩定高效能錫鈣鈦礦太陽能電池之應用
論文名稱(外文):Development of organic cations for highly efficient and stable tin-based perovskite solar cells
指導教授:刁維光
指導教授(外文):Diau, Wei-Guang
口試委員:洪政雄楊耀文陳昭宇
口試委員(外文):Hung, Chen-HsiungYang, Yaw-WenChen, Peter
口試日期:2018-7-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:151
中文關鍵詞:鈣鈦礦無鉛錫鈣鈦礦
外文關鍵詞:PerovskiteLead-freeTin perovskite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要以無鉛錫鈣鈦礦為主,做為鈣鈦礦太陽能電池中的光吸收層,並依序沉積電洞傳輸層PEDOT:PSS,錫鈣鈦礦吸光層,電子傳輸層,最後在蒸鍍銀,製備正型平板鈣鈦礦太陽能電池,並以FASnI3為主要架構,首先透過摻混有機陽離子的方式,大幅改善薄膜質量,並大幅提升元件各方面的表現,在有摻雜BAI與EDAI2的元件最高效率,初製備時分別為5.5%與7.4%,特別在EDAI2摻混的元件中觀察到緩慢鈍化薄膜表面與內部晶體應變鬆弛的現象,有助於提升元件之長效穩定性表現,在經過兩千小時封裝且存放手套箱中,最高效率可以提升至8.9%。
另外將體積較大的胍鹽陽離子引入FASnI3鈣鈦礦中,並添加1% EDAI2,不僅僅提升初製備時的效率,也提升元件的照光穩定性與長效穩定性,然而初製備時最高效率為8.5%,經過約兩千小時後,最高效率更是高達9.6%,是目前無鉛錫鈣鈦礦所獲得最高效率之一,我們也將初製備時的元件封裝後送去RCNPV-PVEVL,National Central Univerity進行效率驗證獲得8.3%效率,也世界上首次能夠將錫鈣鈦礦的太陽能電池進行效率認證。
This thesis is mainly based on lead-free tin perovskite, as a light absorbing layer in the inverted planar heterojunction (PHJ) perovskite solar cell. FASnI3 is used as perovskite layer. In the first part, by employing varied organic cations, the quality of the thin film was greatly improved. Additionally, the various performance parameters were extremely enhanced in the presence of BAI and EDAI2 as additives. The highest efficiency was obtained for fresh devices employing BAI and EDAI2 is 5.5% and 7.4%, respectively. In particular, the phenomenon of slow surface passivation and relaxation of crystal strain was observed in the EDAI2, which contributes to the long-term stability performance. After two thousand hours with encapsulation and storaged in the glove box, the maximum efficiency increased to 8.9%.
For the second part, larger guanidinium cations were introduced into the FASnI3 perovskite, and 1% EDAI2 as additive not only improved the efficiency at the time of initial preparation, but also improved the light soaking and long-term stability of the device. The highest efficiency obtained for fresh device was 8.5% and after 2,000 hours, the maximum efficiency was as high as 9.6%, which is one of the highest efficiencies that lead-free tin perovskite has obtained so far. The device that was initially prepared was encapsulated and sent to RCNPV-PVEVL, National Central Univerity. It is the first time in the world that tin-based devices were able to pass all severe certification steps and an efficiency of 8.3% was certified.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xxi
第一章 緒論 1
第二章 文獻回顧 3
2-1鈣鈦礦太陽能電池 (Perovskite Solar Cell) 3
2-1-1 敏化染料電池為基礎的新技術 7
2-1-2 鈣鈦礦材料的導入與發展 9
2-1-3 鈣鈦礦太陽能電池元件結構及工作原理 23
2-2 錫鈣鈦礦(Sn-based Perovskite solar cells) 28
2-2-1 錫Sn(v.s.鉛Pb)二價金屬的導入與優勢 29
2-2-2 錫鈣鈦礦(Sn-based Perovskite solar cells)的發展 30
2-2-3 添加氟化錫以改善薄膜質量Sn compensation: SnF2 57
2-2-4 錫鈣鈦礦(Sn-based Perovskite)成膜方法 60
2-2-5 當前發展所面臨的困難 67
2-3 研究動機 68
第三章 實驗步驟與量測方法 70
3-1實驗藥品及儀器 70
3-2 實驗步驟 73
3-2-1 導電玻璃ITO的蝕刻與清洗 73
3-2-2 有機陽離子合成 74
3-2-3 鈣鈦礦前驅物溶液配置 74
3-2-4 沉積電洞傳輸層 PEDOT:PSS 75
3-2-5 沉積鈣鈦礦薄膜 75
3-2-6 沉積電子傳輸層 C60 76
3-2-7 沉積電洞阻擋層 Bathocuproine, BCP 76
3-2-8 沉積銀電極 Ag 76
3-3鈣鈦礦太陽能電池元件量測 77
3-3-1 光電轉換效率量測 78
3-3-2 外部量子效率量測 80
第四章 Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells 透過摻雜有機陽離子緩慢鈍化薄膜表面缺陷和發生內部晶體鬆弛現象,以改善錫鈣鈦礦太陽能電池效率及穩定性。 81
4-0 本章概論 81
4-1 改善FASnI3薄膜形貌初步測試 82
4-2 摻雜有機金屬陽離子優化FASnI3 鈣鈦礦太陽能電池 84
4-3 添加不同劑量有機金屬陽離子對鈣鈦礦形貌的影響 87
4-4 討論不同添加劑與不同劑量之XRD,PL,UV,TCSPC 88
4-5 探討不同濃度對元件PV特性的改變 92
4-6 不同添加劑對元件光轉換效率的提升 95
4-7 探討不同添加劑的鈣鈦礦電荷重組(charge recombination)機制 98
4-8 遲滯效應與元件穩定性性測試 100
4-9 深入探討緩慢鈍化薄膜表面缺陷和內部晶體鬆弛的現象 103
4-10 同時摻雜兩種陽離子添加劑之影響 108
4-11 討論BAI &BAI+EDAI2是否和EDAI2一樣具有緩慢鈍化的現象 109
4-12 結論 111
4-13 Supplementary Information 112
第五章 Large guanidinium cation mixed with formamidinium in tin iodide perovskites巨大胍鹽陽離子與甲脒混摻混入碘化錫鈣鈦礦 116
5-0 本章概論 116
5-1 將有機巨大胍鹽陽離子(CH6N3+)引入FASnI3鈣鈦礦中之影響 116
5-2 胍鹽(GAI)混入FASnI3對薄膜形貌之影響 120
5-3 針對不同劑量的胍鹽(GAI)討論UV,PL ,UPS,TCSPC 123
5-4 探討不同劑量的胍鹽(GAI)對元件效率的改變 126
5-5 不同劑量的EDAI2對元件效率的影響 129
5-6 遲滯效應與元件穩定性性測試 130
5-7 效率認證(Efficiency certification) 133
5-8 結論 139
5-9 Supplementary Information 139
第六章 總結 145
參考文獻 145
1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
2. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-4093.
3. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2.
4. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643.
5. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
6. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
7. Kim, H.-S.; Im, S. H.; Park, N.-G., Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 2014, 118 (11), 5615-5625.
8. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.
9. Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science 2014, 7 (1), 399-407.
10. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications 2013, 4, 2761.
11. You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H.; Yang, Y., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8 (2), 1674-1680.
12. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 2014, 13 (9), 897-903.
13. Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I., Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy & Environmental Science 2014, 7 (8), 2642-2646.
14. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 2014, 7 (8), 2619-2623.
15. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials 2014, 26 (37), 6503-6509.
16. Chiang, C.-H.; Wu, C.-G., Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat Photon 2016, 10 (3), 196-200.
17. You, J.; Yang, Y.; Hong, Z.; Song, T.-B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W.-H.; Li, G.; Yang, Y., Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters 2014, 105 (18), 183902.
18. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522.
19. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
20. Chiang, C.-H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C.-G., The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science 2017, 10 (3), 808-817.
21. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie International Edition 2014, 53 (37), 9898-9903.
22. Huang, F.; Dkhissi, Y.; Huang, W.; Xiao, M.; Benesperi, I.; Rubanov, S.; Zhu, Y.; Lin, X.; Jiang, L.; Zhou, Y.; Gray-Weale, A.; Etheridge, J.; McNeill, C. R.; Caruso, R. A.; Bach, U.; Spiccia, L.; Cheng, Y.-B., Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 2014, 10, 10-18.
23. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542.
24. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
25. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234.
26. Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T., Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (1), 164-169.
27. Meng, L.; You, J.; Guo, T.-F.; Yang, Y., Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research 2016, 49 (1), 155-165.
28. Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; van de Krol, R.; Moehl, T.; Gratzel, M.; Moser, J.-E., Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photon 2014, 8 (3), 250-255.
29. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (9), 3061-3068.
30. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8, 489.
31. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (35), 11445-11452.
32. Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A 2015, 3 (29), 14996-15000.
33. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
34. Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A., Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 2016, 1, 16178.
35. Ke, W.; Stoumpos, C. C.; Logsdon, J. L.; Wasielewski, M. R.; Yan, Y.; Fang, G.; Kanatzidis, M. G., TiO2–ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (45), 14998-15003.
36. Liao, W.; Zhao, D.; Yu, Y.; Grice, C.; Wang, C.; J Cimaroli, A.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22. 2016; Vol. 28.
37. Xi, J.; Wu, Z.; Bo, J.; Dong, H.; Ran, C.; Lei, T.; Song, T.-B.; Ke, W.; Yokoyama, T.; Hou, X.; G. Kanatzidis, M.; Piao, C., Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead-Free Perovskite Solar Cells. 2017; p 1606964.
38. Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. 2017; Vol. 30, p 1703800.
39. Cao, D.; Stoumpos, C.; Yokoyama, T.; L. Logsdon, J.; Song, T.-B.; Farha, O.; R. Wasielewski, M.; Hupp, J.; G. Kanatzidis, M., Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n −1 Sn n I 3 n +1 Perovskites. 2017; Vol. 2, p 982-990.
40. Liao, Y.; Liu, H.; Zhou, W.; Yang, D.; Shang, Y.; Shi, Z.; Li, B.; Jiang, X.; Zhang, L.; Quan, L. N.; Quintero-Bermudez, R.; Sutherland, B. R.; Mi, Q.; Sargent, E. H.; Ning, Z., Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society 2017, 139 (19), 6693-6699.
41. Lee, S. J.; Shin, S. S.; Im, J.; Ahn, T. K.; Noh, J. H.; Jeon, N. J.; Seok, S. I.; Seo, J., Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. ACS Energy Letters 2018, 3 (1), 46-53.
42. Ke, W.; Stoumpos, C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O.; Chen, M.; Sarma, D.; Zhang, Y.; R. Wasielewski, M.; G. Kanatzidis, M., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3. 2017; Vol. 3, p e1701293.
43. Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Mao, L.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G., Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI3 Perovskites. Journal of the American Chemical Society 2017, 139 (41), 14800-14806.
44. Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.-C.; Kanatzidis, M. G., Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells. Journal of the American Chemical Society 2018, 140 (1), 388-393.
45. Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. 2017; Vol. 4, p 1700204.
46. Shao, S.; Liu, J.; Portale, G.; Fang, H.-H.; Blake, G.; ten Brink, G.; Jan Anton Koster, L.; Loi, M., Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. 2017; Vol. 8, p 1702019.
47. Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z., Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Letters 2018, 3 (3), 713-721.
48. Ito, N.; Kamarudin, M. A.; Hirotani, D.; Zhang, Y.; Shen, Q.; Ogomi, Y.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S., Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. The Journal of Physical Chemistry Letters 2018, 9 (7), 1682-1688.
49. Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., Low-dimensional Perovskite Interlayer for Highly Efficient Lead-free Formamidinium Tin Iodide Perovskite Solar Cells. 2018; Vol. 49.
50. Konstantakou, M.; Stergiopoulos, T., A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (23), 11518-11549.
51. Gao, P.; Gratzel, M.; Nazeeruddin, M. K., Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science 2014, 7 (8), 2448-2463.
52. Yu, Y.; Zhao, D.; Grice, C.; Meng, W.; Wang, C.; Liao, W.; J. Cimaroli, A.; zhang, h.; Zhu, K.; Yan, Y., Thermally Evaporated Methylammonium Tin Triiodide Thin Films for Lead-Free Perovskite Solar Cell Fabrication. 2016; Vol. 6.
53. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.
54. Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G., Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process. The Journal of Physical Chemistry Letters 2016, 7 (5), 776-782.
電子全文 電子全文(網際網路公開日期:20230823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔