(3.238.186.43) 您好!臺灣時間:2021/03/01 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂健瑋
研究生(外文):Lu, Chien-Wei
論文名稱:感應耦合電漿質譜儀在微量元素分析上之應用研究
論文名稱(外文):Application of Trace Element Analyses by Inductively Coupled Plasma Mass Spectrometer
指導教授:吳淑褓
指導教授(外文):Wu, Shu-Pao
口試委員:廖奕翰許馨云洪嘉呈吳劍侯
口試委員(外文):Liau, IanHsu, Hsin-YunHorng, Jia-CherngWu, Chien-Hou
口試日期:2019-05-28
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:159
中文關鍵詞:微量元素分析感應耦合電漿質譜儀四乙氧基矽烷聚醯亞胺配向液高純氣體石油產品
外文關鍵詞:trace element analysisICP-MSTEOSPI solutionhigh purity gasespetroleum product
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用感應耦合電漿質譜儀 (inductively coupled plasma mass spectrometer, ICP-MS)依據待測物的特性開發合適的前處理技術、進樣模式及定量手法,研究領域涵蓋半導體、顯示器和石化製品等。在本研究中,首先針對半導體製程的高純度濕式化學品材料-四乙氧基矽烷,利用液液萃取法取代傳統的消化或稀釋等前處理步驟,有效的濃縮並進行其極微量的金屬離子定量分析,此法適合作為製程原料品質控管之依據;其次針對半導體製程用之高純度氮氣、氦氣、氫氣和鹽酸氣體,設計雙瓶式採樣裝置並搭配多孔元件進行氣體中微量金屬離子的吸收並進行定量分析,可協助國內氣體業者建立品管技術;隨後針對顯示器產業用之平面旋轉型聚醯亞胺配向液,利用有機直測技術搭配外標準品定量技術進行微量金屬離子檢測,可應用在顯示器製程的進料管控分析;最後,因應國內汽柴油中硫含量的管制值下修至10 μg g-1並可能持續下探,而現行分析方法有其應用極限,故將汽柴油樣品以不同溶劑系統稀釋後,利用ICP-MS搭配有機進樣系統並使用檢量線進行硫的定量分析,此技術可作為監控石油產品品質的利器。
Inductively coupled plasma mass spectrometer (ICP-MS) coupled with variety pretreatments and introduction systems for the trace elements analysis was utilized in the different applications in this study. The first part, ICP-MS was applied to analyze the metal ion impurity in the tetraethyl orthosilicate (TEOS) which is used for semiconductor manufacturing. With a simple liquid-liquid extraction approach, the metal ion in TEOS was transfered into water by adding an assisting agent and was quantified by ICP-MS with concentration effort. Such a method could be used to routine quality control and further extended to analyze other organic materials with trace metal ion impurity. In the second part, a gas sampling system, consists of two impingers and porous tubes, was developed to collect the trace metal ion in nitrogen, hydrogen, helium and hydrogen chloride gases into the specific absorption solution. Then the metal ion in these gases can be quantified by ICP-MS.
In the third part, the ICP-MS coupled with the organic introduction system method was used to quantify the concentrations of metal ion impurities in in-plane-switching (IPS) type polyimide (PI) alignment solution. This method can be used not only for routine and large-scale sample analyses but also for studying contamination phenomena during the PI patterning process and for determining the leaching rates of trace metals from bottles.
Finally, we developed an ICP-MS method to directly analyze the total sulfur content in petroleum fuel samples.With simple dilution approach of various organic solvent system in specific dilution factor, gasoline and diesel samples were able to have an accurate sulfur concentration by external calibration way. The accuracy of the developed method was evaluated by examining fourteen international proficiency testing samples containing gasoline, ethanol-blended gasoline, diesel and biodiesel obtained from the American Society for Testing and Materials and the Institute for Interlaboratory Studies. The described method is suitable for routine analysis of total sulfur content in petroleum fuels with the combination of an automatic injection system.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
縮寫對照表 XIII
一、緒論 1
1.1 微量分析之重要性 1
1.2 感應耦合電漿質譜儀 5
1.2.1 ICP-MS 原理與簡介 5
1.2.2 ICP-MS 的分析干擾與去除 9
1.2.3 SF-ICP-MS 的分析優勢與應用 12
1.2.4 有機進樣系統搭配ICP-MS之介紹 15
1.2.5 ICP-MS在微量分析之應用研究 20
二、實驗儀器及藥品 23
2.1 實驗儀器 23
2.2 藥品 24
三、TEOS中微量金屬離子含量分析 27
3.1 研究目的 27
3.2 實驗方法與步驟 29
3.2.1 實驗設計 29
3.2.2 實驗儀器參數與條件 31
3.2.3 實驗流程 36
3.3 結果與討論 39
3.3.1 SF-ICP-MS之參數調整 39
3.3.2 助萃劑和萃取劑 45
3.3.3 反應時間 46
3.3.4 濃縮倍數 50
3.3.5 真實樣品分析 57
3.4 小結 59
四、半導體製程用高純度氣體中微量金屬離子含量分析 60
4.1 研究目的 60
4.2 實驗規劃 65
4.2.1 實驗設計 65
4.2.2 實驗儀器參數與條件 68
4.2.3 實驗流程 70
4.3結果與討論 72
4.3.1 SF-ICP-MS之參數調整 72
4.3.2 方法偵測極限 75
4.3.3 最佳採樣參數 76
4.3.4 真實樣品分析 84
4.4 小結 88
五、IPS型PI配向液中微量金屬離子含量分析 90
5.1 研究目的 90
5.2 實驗規劃 93
5.2.1 實驗設計 93
5.2.2 實驗儀器參數與條件 95
5.2.3 實驗流程 97
5.3 結果與討論 99
5.3.1稀釋溶劑的選擇 99
5.3.2 SF-ICP-MS之參數調整 102
5.3.3 容器溶出測試 105
5.3.4 PI配向製程汙染評估 107
5.4 小結 109
六、汽柴油中微量硫含量分析 111
6.1 研究目的 111
6.2實驗規劃 115
6.2.1 實驗設計 115
6.2.2 實驗儀器參數與條件 119
6.2.3 實驗流程 123
6.3 結果與討論 125
6.3.1 HR-ICP-MS分析石油樣品中硫的最佳參數 125
6.3.2 稀釋倍數的選擇 129
6.3.3 分析準確度的驗證 132
6.3.4 真實樣品分析 136
6.4 小結 138
七、結論 139
八、參考文獻 141
附錄一 147
附錄二 153
1. J. Namiesnik, Critical Reviews in Analytical Chemistry, 2002, 32, 271.
2. https://irds.ieee.org, accessed on 14th June 2019.
3. L. W. Shive, K. Ruth and P. Schmidt, Micro., 1999, 17, 27.
4. http://www.jsg.utexas.edu, accessed on 14th June 2019.
5. R. S. Houk, V. A. Fassel, G. D. Flesh, H. G. Svec and A. L. Gray, Anal. Chem., 1980, 52, 2883.
6. S. A. Jaing , R. S. Houk and M.A. Steven., Anal. Chem., 1988, 60, 12174
7. D. Beauchemin, Anal. Chem., 2008, 80. 4455.
8. J. Lechtenfeld, B. P. Koch, W. Geibert, K. Ludwichowski and G. Kattner, Anal. Chem.,2011, 83, 8968.
9. L. Camp, B. L. Sharp, H. J. Reid, J. Entwisle and H. Goenaga-Infante, Anal. Bioanal. Chem., 2012, 402, 367.
10. B. Meermann, M. Bockx, A. Laenen, C. V. Looveren, F. Cuyckens and F. Vanhaecke, Anal. Bioanal. Chem., 2012, 402, 439.
11. B. Jackson, V. Taylor, R. A. Backer and E. Miller, Environ. Sci. Technol., 2009, 43, 2463.
12. C. Møller, S. Stürup, H. R. Hansen and B. Gammelgaard, J. Anal. At. Spectrom., 2009, 24, 1208.
13. E. H. Evans, J. Pisonero, C. M. M. Smith, R. N. Taylor, J. Anal. At. Spectrom., 2017, 32, 869.
14. C.-C. Wan, S.-J. Jiang, M.-T. You and A. C. Sahayam, J. Anal. At. Spectrom., 2005, 20, 1290.
15. Y.-C. Sun and C.-J. Ko, Microchem. J., 2004, 78, 163.
16. W. J. McShane, R. S. Pappas, V. Wilson-McElprang and Dan Paschal, Spect. Act. B, 2008, 63, 638.
17. N. Nonose and M. Kubota, J. Anal. At.Spectrom., 2001, 16, 551.
18. N. Nonose and M. Kubota, J. Anal. At.Spectrom., 2001, 16, 560.
19. B. L. Batista, J. L. Rodrigues, J. A. Nunes, V. C. De Oliveira Souza and F. Barbosa Jr., Anal. Chim. Acta, 2009, 639, 13.
20. K. De Wolf, L. Balcaen, E. Van De Walle, F. Cuyckens and F. Vanhaecke, J. Anal. At. Spectrom., 2010, 25, 419.
21. K. Gellein, S. Lierhagen, P. Brevik, M. Teigen, P. Kaur, T. Singh, T. P. Flaten and T. Syversen, Biol. Tr. Elem. Res., 2008, 123, 250.
22. Y. Zhu and K. Chiba, Talanta, 2012, 90, 57.
23. G. Antes, J. S. F. Pereira, M. S. P. Enders, C. M. M. Moreira and E. I. Müller, Micro. J., 2012, 101, 54.
24. A.R. Timerbaev, Trends Anal. Chem., 2009, 28, 416.
25. P. Moraes, M. F. Mesko, P. A. Mello, J. N.G Paniz, V. L. Dressler, G. Knapp and E. M.M. Flores., Spect. Act. B, 2007, 62, 1025.
26. X.-W. Wang, J.-F. Liu, X.-Y. Wang, B. Shao, L.-P. Liu and J. Zhang, Anal. Methods, 2015, 7, 3224.
27. R. S. Amais, A. Virgilio, D. Schiavo and J. A. Nóbrega, Micro. J., 2015, 120, 64.
28. C. Walkner, R. Gratzer, T. Meisel and S. N. H. Bokhari, Org Geochem, 2017, 103, 22.
29. J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao and I. Saito, Talanta, 2006, 68, 1584.
30. J. A. Moreton and H. T. Delves, J. Anal. At. Spectrom., 1998, 13 ,65.
31. J. S. Barin, B. Tischer, R. S. Picoloto, F. G. Antes, F. E. B. da Silva, F. R. Paula, E. M. M. Flores, J. Anal. Atom. Spectrom.,2014, 29, 352.
32. C.-Y. Ho and S.-J. Jiang, J. Anal. At. Spectrom., 2002, 17, 688.
33. Y.-C. Sun and C.-J. Ko, J. Anal. At. Spectrom., 2006, 21, 311.
34. B. Moradi, S. Swoboda, B. Robinson, T. Prohaska, A. Kaestnerc, S. E. Oswald, W. W. Wenzel and R. Schulin, Envir. Exp. B., 2010, 69, 24.
35. W. Castro, J. Hoogewerff, C. Latkoczy and J. R. Almirall, Foren. Sci. I., 2010, 195, 17.
36. X. Ravanel, C. Trouiller, M. Juhel, C. Wyon, L. F. T. Kwakman and D. Le´onard, Appl. Surf. Sci., 2008, 255, 1415.
37. B. Charlton, A. S. Fisher, P. S. Goodall, M. W. Hinds, S. Lancaster and S. Shore, J. Anal. At. Spectrom., 2008, 23, 1636.
38. A. Massadeh, A. Gharibeh, K. Omari, I. Al-Momani, A. Alomari, H. Tumahand and W. Hayajneh, Biol. Tr. Elem. Res., 2010, 133, 1.
39. L. Ruzik, P. Kwiatkowski, Talanta, 2018, 183, 102.
40. R. Sanchez, C. Sanchez, J. L. Todoli and C.-P. Lienemann, J. Anal. At. Spectrom., 2014, 29 , 2.
41. L. Poirier, J. Nelson, D. Leong, L. Berhane, P. Hajdu, F. Lopez-Linares, Energ. Fuel., 2016, 30, 3783.
42. L. H. Møller, A. Macherius, T. H. Hansen, H. M. Nielsen, C. Cornett, J. Østergaard, S. Stürup, B. Gammelgaard, J. Anal. At. Spectrom., 2016, 31, 1877.
43. V. Sele, J. J. Sloth, B. Holmelid, S. Valdersnes, K. Skov and H. Amlund, Talanta, 2014, 121, 89.
44. G. Caumette, C.-P. Lienemann, I. Merdrign, B. Bouyssiere and R. Lobinski, J. Anal. At. Spectrom., 2010, 25, 1123.
45. S. D’Ilio , N. Violante, S. Caimi, M. D. Gregorio and O. Senofonte, Anal. Chim. Acta, 2006, 573-574, 432.
46. S. D’Ilio, N. Violante, M. D. Gregorio, O. Senofonte and F. Petrucci, Anal. Chim. Acta, 2006, 579, 202.
47. 洪煥毅,「高解析感應耦合電漿質譜儀搭配有機溶劑進樣系統於不同領域之研究應用」,國立交通大學,博士論文,民國101年。
48. A. I. Labropoulos, C. P. Athanasekou, N. K. Kakizis, A. A. Sapalidis, G. I. Pilatos, G. E. Romanos and N. K. Kanellopoulos, Chem. Eng. J., 2014, 255, 377.
49. J. C. Almeida, A. G. B. Castro, J. J. H. Lancastre, I.M. Miranda Salvado, F. M. A. Margaça, M. H. V. Fernandes, L. M. Ferreira and M. H. Casimiro, Mater. Chem. Phys., 2014, 143, 557.
50. J. Zeng and Z.Guo, Coll. Surf. A, 2014, 444, 283.
51. K. A. Reinhardt and R. F. Reidy, Handbook for Cleaning for Semiconductor Manufacturing: Fundamentals and Applications, 2010.
52. J.-L. Baltzinger, D. Bruno and J. Grym (Eds.), Contamination Monitoring and Analysis in Semiconductor Manufacturing, Semiconductor Technologies, InTech, Rijeka.
53. R. Abejón, A. Garea and A. Irabien, Sep. Purif. Technol., 2010, 76, 44.
54. R. Thomas, Practical Guide to ICP-MS: A Tutorial for Beginners, 2013.
55. S. Kushibe and N. Yabumoto, J. Surf. Anal., 2002, 9, 370.
56. J. S. Lee, P. K. Jun and H. B. Lim, IEEE Sens. J., 2011, 11, 1120.
57. B. R. Tuttle, S. Dhar, S.-H. Ryu, X. Zhu, J. R. Williams, L. C. Feldman and S. T. Pantelides, J. Appl. Phys., 2011, 109, 023702.
58. G.-T. Wei, Z. S. Yang, C.-Y. Lee, H.-Y. Yang and C. R. C. Wang, J. Am. Chem. Soc. 2004, 126, 5036.
59. J. D. Wright and N. A. J. M. Sommerdijk, Sol-Gel Materials: Chemistry and Applications, 2000.
60. T. V. Hoogerstraete, B. Onghena and K. Binnemans, J. Phys. Chem. Lett., 2013, 4, 1659.
61. S. H. Lee and J. C. Rasaiah, J. Phys. Chem., 1996, 100, 1420.
62. C. J. Brinker, J. Non-Cryst. Solids, 1988, 100, 31.
63. W. M. Jones and D. B. Fischbach, J. Non-Cryst. Solids, 1988, 101, 123.
64. H.-Y. Hung, C.-W. Lu, C.-Y. Lee, C.-S. Hsu and Y.-Z. Hsieh, Anal. Methods, 2012, 4, 3631.
65. J. Rydberg, M. Cox, C. Musikas and G. R. Choppin, Solvent Extraction Principles and Practice, 2004.
66. http://www.linde-lienhwa.com.tw, accessed on 14th June 2019.
67. https://www.sgs.com.tw, access on 14th June 2019.
68. 環境檢驗方法偵測極限測定指引,NIEA-PA107。
69. T. Yamaguchi, T. Ishikawa and Y. Imai, Integrated Nano-Biomechanics, Elsevier, 2018.
70. https://www.ncbi.nlm.nih.gov, accessed on 14th June 2019.
71. J. G. Speight, Handbook of Petroleum Product Analysis, 2002.
72. M. Goodarzi, M. Vahedpour and M. Solimannejad, Struct. Chem., 2012, 23, 1609.
73. P. Aburto, K. Zuñiga, J. Campos-Terán, J. Aburto and E. Torres, Energ.Fuel., 2014, 28, 403.
74. W. Gao, L. Ren, X. Zhang and X. Gao, Pet. Sci. and Technol., 2014, 32, 1087.
75. V. C. Srivastava, RSC Adv., 2012, 2, 759.
76. L. Chambers and M. L. Duffy, J. Chrom. Sci., 2003, 41, 528.
77. I. Al-Zahrani and C. Basheer, J. Chromat. A., 2014, 1330, 97.
78. R. E. Santelli, E. P. Oliveira, M. D. F. B. De Carvalho, M. A. Bezerra and A. S. Freire, Spect. Act. B, 2008, 63, 800.
79. ASTM D5453-12, ASTM International, 2012.
80. R. S. Amais, S. E. Long, J. A. Nóbrega and S. J. Christopher, Anal. Chim. Acta, 2014, 806, 91.
81. R. S. Amais, G. L. Donati and J. A. Nóbrega , J. Braz. Chem. Soc., 2012, 23, 797.
82. P. Giusti, Y. Nuevo Ordonez, C.-P. Lienemann, D. Schaumloffel, B. Bouyssiere and R. Lobinski, J. Anal. At. Spectrom., 2007, 22, 88.
83. C.P. Lienemann, S. Dreyfus, C. Pecheyran and O.F.X. Donard, Oil Gas Sci. Technol., 2007, 62, 69.
84. G. Caumette, C.-P. Lienemann, I. Merdrignac, H. Paucot, B. Bouyssiere and R. Lobinski, Talanta, 2009, 80, 1039.
85. P. Pohl, N. Vorapalawut, B. Bouyssiere, H. Carrier and R. Lobinski, J. Anal. At. Spectrom., 2010, 25, 704.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔