(3.239.159.107) 您好!臺灣時間:2021/03/08 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳宗昱
研究生(外文):Wu, Tsung-Yu
論文名稱:以水質面向探討台灣自來水用戶水錶積垢成因
論文名稱(外文):Effect of water quality on the scaling formation of water meters in Taiwan
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
口試委員:張時獻童心欣黃志彬
口試委員(外文):Zhang, Shi-XianTong, Xin-XinHuang, Chih-Pin
口試日期:2019-1-17
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:水錶黃銅合金脫鋅腐蝕積垢自來水瑞芳
外文關鍵詞:water meterbrassdezincificationscalingpotable waterRuifeng
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經濟部標檢局於民國105年抽驗台灣自來水用戶水錶積垢情形,於瑞芳地區發現了高達74%的不合格率,遠高於其他地區,猜測原因為用戶水錶內部的乳黃色積垢物所致,而此積垢物除了造成水錶內部阻塞以外,還可能因為積垢物累積而使入水口截面積縮小,使得水流流速加快,影響用水度數之準確性。
為了解決此一現象,本研究開始針對用戶水錶的積垢狀況做探討,以期解決台灣用戶水錶之積垢情形。除了瑞芳地區,本研究另外選定完全無積垢的板橋地區作為對照組,發現了不同地區由於水錶流經之自來水的不同使得水錶積垢狀況有所不同,加上過去文獻指出,黃銅合金鑄件在特定水質條件中很容易產生腐蝕而生成積垢,推測積垢之形成受水質影響之深,因此著手針對於水質面向探討積垢問題。
本研究可分為三個部分,第一部分首先對於有積垢與無積垢之地區進行各項水質分析,如pH、濁度、鹼度、水溫、溶氧、導電度、總溶解固體物、氧化還原電位、自由有效餘氯、結合有效餘氯、LSI值以及金屬含量,第二部分是對於積垢組成做有機物及無機物分析,結果顯示積垢物主要含有碳酸鋅、氫氧化鋅、氧化鋅,少量含有鋁矽氧化物以及部分脂肪酸,確立了積垢物為黃銅之腐蝕產物,最後是以統計分析找出具有顯著差異且相關性及代表性高的水質參數,結果顯示,當pH、鹼度及導電度越高,則積垢量生成越多並;反之,當溶氧、氧化還原電位、餘氯越高,則積垢量越少,推測瑞芳地區由於位於易腐蝕之pH區間,且餘氯量低,使得生物腐蝕可能性較高,加上高金屬含量使導電度提高,升高水中黃銅水錶之腐蝕電流,進而加劇腐蝕作用;而板橋地區無積垢生成之現象,推測為其自來水pH偏中性,避開了易腐蝕之區間值,且其餘氯量較高,使得氧化還原電位升高,致使黃銅水錶表面產生鈍化反應而抑制腐蝕反應,同時高餘氯量及偏中性的pH值使得水中不易產生生物腐蝕。
由本研究之結果得知主要促進因子為pH、鹼度、導電度,抑制因子為餘氯、氧化還原電位、溶氧,因此若在淨水廠出水水質中降低pH值至中性,且提高加氯量以升高氧化還原電位,促使黃銅水錶產生鈍化反應,也避免生物腐蝕,如此一來便可以使得黃銅水錶不受腐蝕侵蝕而生成積垢物。
Brass dezincification corrosion of water meter is a significant problem in potable water systems due to corrosion product (scalants) build-up and pipe blockage, and pitting failure. In addition to cause internal blockage of the water meter, the scaling may also reduce the cross-sectional area of the water inlet. This might cause the increase of water flow of the water meter, even affecting the accuracy of the record of water consumption. It was pointed out that brass alloys are prone to corrosion in certain water quality conditions and to form scalants.
The formation of scaling is deeply affected by water quality. This study was thus to investigate the effect of the water quality on the scaling formation in the water meter in Taiwan. In addition to the Ruifang area, this study also selected the Banqiao area as the control group, which was found comprising insignificant scaling inside water meter. This study can be divided into three parts. The first part was to analyze various water quality in Ruifang area and Banqiao area, e.g., pH, turbidity, alkalinity, temperature. Then the second part was the analysis of organic matter and inorganic compositions of the scalants. The third part was to identify the correlation between water quality and scaling by statistical analysis.
It was found that different areas have different conditions of scalant due to the differences in the water quality. The results showed that the scalants mainly contained zinc carbonate, zinc hydroxide, zine oxide, a small amount of aluminum oxide and bismuth oxide and fatty acids. It is inferred to be the product of dezincification corrosion, as known as, meringue. The results also showed that the meringue dezincification was favored by higher pH (between 8.0 and 9.0), alkalinity and conductivity. Conversely, increased free chlorine and chloramine may inhibit meringue dezincification because of the high oxidation-reduction potential. the water meter in Ruifang area is in the corrosive pH range, and the residual chlorine content is low, which induced the possibility of microbiologically influenced corrosion(MIC). The high metal content of water increased the conductivity then rose the corrosion current of the surface of water meter, which aggravated the corrosion condition. However, there was negligible phenomenon of scaling formation inside the water meter in Banqiao area because the pH of water in this area was in neutral. Furthermore, the residual chlorine was higher (above 0.3 mg/L), which caused the oxidation-reduction potential to rise, resulting in a passivation reaction on the surface of the water meters. Therefore, the high residual chlorine and neutral pH keep the water meter away from MIC.
From the results of this study, the pH, alkalinity, and conductivity have positive correlation with scaling, and the inhibitors are residual chlorine, oxidation-reduction potential, and dissolved oxygen. Therefore, if the pH of the water is in neutral, and the chlorination amount is increased to increase the oxidation-reduction potential, the water meter might generate the passive layer, at the same time, avoid MIC. In this way, the water meter can be prevented from meringue.
摘要 I
ABSTRACT III
目錄 IX
表目錄 XI
第一章 前 言 1
1.1 研究背景 1
第二章 文獻回顧 3
2.1 國內自來水水錶使用現況 3
2.2 黃銅合金鑄件腐蝕 4
2.2.1 金屬腐蝕型態 4
2.2.2 脫鋅腐蝕產物生成機制 8
2.3 黃銅積垢的成分與來源 10
2.3.1 鋅成分之來源 10
2.3.2 矽成分之來源 10
2.3.3 鋁成分之來源 11
2.4 水質對水錶腐蝕的影響 12
2.4.1 物化水質參數之影響 12
2.4.2 微生物之影響 14
第三章 材料與方法 17
3.1 研究架構 17
3.2 水錶採樣 19
3.3 水錶積垢物採樣 20
3.4 水質採樣及分析 22
3.5 數據分析 26
第四章 結果與討論 28
4.1 水錶的積垢調查與組成探討 28
4.2 用戶水錶設置段自來水水質特性與積垢調查 35
4.2.1 水錶積垢嚴重程度與分佈位置 35
4.2.2 瑞芳地區與板橋地區 37
4.3 水錶積垢情形與水質關聯性 42
第五章 結論 45
5.1 結論 45
5.2 建議 46
附 錄 47
附錄一 畢業口試委員意見與回覆 47
參考文獻 51
ABBAS, M.I. (1991) “Effect of temperature on dezincification and electrochemical behavior of 70-30 brass in sulphuric acid”British Corrosion Journal, 26(4), 273-278
Al-Kharafi, F. M., & Badawy, W. A. (1999) "Corrosion and Passivation of Lead in Aqueous Solutions" Corrosion Prevention & Control, 46 ,13 .
Arregui, F., Cabrera, E., Cobacho, R. (2006) "Integrated Water Meter Management" IWA publishing (ISBN 9781843390343)
Ashour, E. A. & Ateya, B. G. (1995) "The effect of phosphates on the susceptibility of α-brass to stress corrosion cracking in sodium nitrite" Corrosion Science, 37(3), 371-380.
Benjamin D. C. (2006) "Material failure modes, part III: A brief tutorial on corrosion-related material failure modes" Journal of Failure Analysis and Prevention, 6(2), 12-19.
Biesinger, M. C., Lau, L. W. M., Gerson, A. R., Smart, R. S. C. (2010) "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn" Applied Surface Science, 257(3), 887-898.
Characklis, W.G. & Marshall, K.C. (1990) "Biofilms, First Edition" Wiley-Interscience (ISBN 978-0471826637)
Charles, S. W. & Edward, S. T. (1934) "Mechanism of Dezincification - Corrosion of Brass" Industrial & Engineering Chemistry, 26(7), 740-743
Chawla, S. L. (1993) "Materials Selection for Corrosion Control, First Edition" ASM International (ISBN 1615037284, 9781615037285)
Cornwell, F. J., Wildsmith, G. & Gilbert, P. T. (1973) "Pitting corrosion in copper tubes in cold water service" British Corrosion Journal, 8(5), 202-209.
Cornwell, F. J., Wildsmith, G. & Gilbert, P. T. (1973) "Pitting corrosion in copper tubes in cold water service" British Corrosion Journal, 8(5), 202-209.
Emily S. & Marc E. (2011) "Effects of flow, brass location, tube materials and temperature on corrosion of brass plumbing devices" Journal of Corrosion Science, 53(4), 1813-1824.
Frankel, G. S.(1997) "Pitting Corrosion of Metals : A Review of the Critical Factors" Journal of The Electrochemical Society, 145(6), 2186-2198.
Galvele, J. R. & Micheli, S. M. (1970) "Mechanism of intergranular corrosion of Al-Cu alloys" Corrosion Science, 10(11), 795-807.
Heidersbach, R. (1969) "Clarification of the Mechanism of the De-Alloying Phenomena" journal of corrosion, 25(12), 519-519.
Ibars, J. R., Polo, J.L., Moreno, D.A., Ranninger, C., Bastidas, J. M. (2004) "An impedance study on admiralty brass dezincification originated by microbiologically influenced corrosion" Biotechnology and Bioengineering, 87(7), 855-862.
Jester, T. C. (1985) "Dezincification update" Journal American Water Works Association, 67-69.
Jones, D.A. (1996) "Principles and Prevention of Corrosion, Second Edition" MacMillan Publishing Company (ISBN 1292042559, 9781292042558)
Kasperek, J., Verchere, D., Jacquet, D., Phillips, N. (1998) "Analysis of the corrosion products on galvanized steels by FTIR spectroscopy" Meterials Chemistry and Physics, 56(3), 205-213.
Kundsen (1940) "Corrosion and Tuberculation" Journal of American Water Works Association, 32(3), 387-393.
Lucey, V. F. (1967) "Mechanism of Pitting Corrosion of Copper in Supply Waters" British Corrosion Journal, 2(5), 175-185.
Lytle, D. A. & Schock, M. R. (2008) "Pitting corrosion of copper in waters with high pH and low alkalinity" American Water Works Association. Journal, 100(3), 115-129.
Manly, W. D. (1956) "Fundamentals of Liquid Metal Corrosion" Corrosion, 12(7), 46-52.
Mattsson, E (1979) "Corrosion of Copper and Brass: Practical Experience in relation to Basic Data" British Corrosion Journal, 14(2), 48-52.
Meletis, E. T. (1996) "A review of present mechanisms of transgranular stress corrosion cracking" Journal of the Mechanical Behavior of Materials, 7(1), 1-14
Miller R. G., Kopfler F. C., Kelty K. C. (1984) "The occurrence of aluminum in drinking water." Journal American Water Works Association 76, 84-91.
Moore, G. C. (1989) "Effects of Chloramination of Potable Water on the Corrosion Resistance of Materials" Meterial Science Centre, 14(2), 191-200
Morales, J.,Fernandez G. T.,Esparza, P.,Gonzalez, S.,Salvarezza, R.C.,Arvia, A.J.(1995) "A comparative study on the passivation and localized corrosion of α, β, and α + β brass in borate buffer solutions containing sodium chloride—I. Electrochemical data" Corrosion Science, 37(2), 227-229.
Nicholas, D. M. F. (1994) "Dezincification of brass in potable waters" Urban Water Research Association of Australia (ISBN 187529886)
Oldfield, J. W. (1988) "Electrochemical Theory of Galvanic Corrosion" ASTN International
Oliphant, R. (1978) "Dezincification by Potable Water of Domestic Plumbing Fittings: Measurement and Control" Water Research Centre Technical Report TR88.
Papandreopoulos, P. (2012) "Non‐destructive surface analysis of accelerated corroded copper alloys" Anti-Corrosion Methods and Materials, 59(3), 110-120.
Rao, T.S., Nair, K. V. K., (1998) "Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater" Corrosion Science, 40(11), 1821-1836.
Revie, R. W. & Uhlig, H. H., (2008) "Corrosion and Corrosion Control:
An Introduction to Corrosion Science and Engineering, Fourth Edition" A John Wiley & Sons, Inc. (ISBN 978-0-471-73279-2)
Sarver, E., & Edwards, M (2011) "Effects of flow, brass location, tube materials and temperature on corrosion of brass plumbing devices" Corrosion Science, 53(5), 1813-1824.
Sarver, E., Zhang, Y. & Edward, M. (2011) "Review of Brass Dezincification Corrosion in Potable Water Systems" Corrosion Review, 28(3-4), 155-196.
Satendra, K., Sankara Narayanan, T. S. N., Suresh Kumar, M. & Manimaran, A. (2006) "Dezincification of brass in sulfide polluted sodium chloride medium: evaluation of the effectiveness of 2-mercaptobenzothiazole" International Journal of Electrochemical Science, 1(8), 456-469.
Sayed, S. M., Ashour, E.A. & Youssef, G.I. (2003) "Effect of sulfide ions on the corrosion behaviour of Al–brass and Cu10Ni alloys in salt water" Materials Chemistry and Physics, 78(3), 825-834.
Selvaraj, S., Ponmariappan, S., Natesan, M., Palaniswamy, N. (2011) "Dezincification of Brass and its Control - An Overview" Corrosion Reviews, 21(1), 41-74.
Simmonds, M. A. (1967) "Dezincification of water supply fittings" Australasian Corrosion Engineering, 11(11), 9-16.
Stuart G. M. (1988) "Dezincification Project" Sydney Water Board
Sun, X., Chen, Z., Li, J., Hou, J., Xu, L. (2018) "Initial NaCl-induced atmospheric corrosion of a dual-phase Cu60-40Zn alloy - Effect of UV illumination" International Journal of Electrochemistry Science, 13(8), 8150-8169.
Sundberg, R., Staffan, H. & Mats Linder (2007) "Intergranular Corrosion (IGA) of Brass" Copper: Better properties for Innovative Products (ISBN: 9783527610327)
Tahara, A. & Shinohara, T. (2005) "Influence of the alloy element on corrosion morphology of the low alloy steels exposed to the atmospheric environments" Corrosion Science, 47(10), 2589-2598.
Tremblay, L. (2012) "Up the Pipe: A literature review of the leaching of copper and zinc from household plumbing systems" Prepared for The Cawthron Institute
Turner, M. E. D. (1961) "The Influence of Water Composition on the Dezincification of DuplexBrass Fittings" Proceedings of the Society for Water Treatment and Examination, 10(2), 162-179.
Turner, M. E. D. (1965) "Further studies on the influence of water composition on the dezincification of duplex brass fittings" Proceedings of the Society for Water Treatment and Examination, 14, 81-87.
Valcarce, M. B., De Sánchez, S. R. & Vazquez, M. (2005) "Localized attack of copper and brass in tap water: the effect of Pseudomonas" Corrosion Science, 47(3), 795-809.
Valcarce, M. B., De Sánchez, S. R. & Vazquez, M. (2006) "Brass dezincification in tap water bacterial suspension" Electrochimica Acta, 51(18), 3736-3742.
Water Services Providers Association (2015) Technical Guidelines for Water Meter (Management) in Kenya.
Zeng, R. C., Zhang, J., Huang W. J., Dietzel, W., Kainer, K. U., Blawert, C., Ke, W. (2006) "Review of studies on corrosion of magnesium alloys" Trans. Nonferrous Met., China16(2006)
Zhang, X. G. (2011) "Galvanic Corrosion" Uhlig's Corrosion Handbook (ISSN 0275-0171)
Zhang, Y. (2009) "Dezincification and brass lead leaching in premise plumbing systems: effects of alloy, physical conditions and water chemistry" Doctoral Dissertation, Virginia Tech.
Zhang, Y. (2009) "Dezincification and Brass Lead Leaching in Premise Plumbing Systems: Effects of Alloy, Physical Conditions and Water Chemistry" Master of Science In Environmental Engineering, Blacksburg, Virginia.
Zhang, Y. & Edwards, M. (2011) "Effects of pH, chloride, bicarbonate, and phosphate on brass dezincification" American Water Works Association. Journal, 103(4), 90-102.
王正懌,「研究氧缺陷對鈷摻雜氧化鋅之物理特性」,中山大學物理研究所碩士論文,2014年。
台灣自來水股份有限公司,「台灣自來水公司用戶水錶積垢成因探討及改善對策委託專業服務」,台灣自來水公司研究計畫,2018年。
何文福、劉書蘋、吳世經、許學全、許世光,「利用蛋殼及植物皮萃取物合成奈米級氫氧基磷灰石」,科學與工程技術學刊,第10卷第1期,2014年。
朱振華,「自來水配水管線中水質生物穩定性之研究」,中興大學環境工程研究所博士論文,2005年。
吳靜怡,「含硫異味物質之化學及生物氧化」,中山大學環境工程研究所碩士論文,2009年。
李紹睿,「水溶液法選擇性成長一維氧化鋅奈米陣列」,交通大學材料科學與工程研究所碩士論文,2006年。
林政立,「地下水中薄膜積垢物二氧化矽去除之研究」,臺北科技大學環境規劃與管理研究所碩士論文,2005年。
林凱隆、周金柱、鄭堡元,「廢觸媒燒結處理作為瓷磚材料之研究」,台灣環境資源擁護發展協會,2011年。
姚潔宜,「低溫燒結氧化鋅奈米薄膜之特性研究」,臺北科技大學機械工程研究所碩士論文,2006年。
胡啟章,「電化學原理與方法」,五南圖書出版股份有限公司 (ISBN 9789571131184),2002年。
張蕙蘭,「垃圾焚化底碴資源化之道路基層應用研究」,交通大學產業安全與防災研究所碩士論文,2007年。
莊和勳,「以射頻磁控濺鍍法製備鎵氟共摻雜氧化鋅薄膜及其特性之研究」,中興大學光電工程研究所博士論文,2015年。
莊順興,「水質指標說明與應用」,水質指標與查證作業實務講習班,2015年。
游本志、蘇柏睿,「分區計量管理用表分析與挖究」,第29屆自來水研究發表會,2012年。
楊崇明、蘇政賢、陳宗霆、林于程,「C級電子式水量計經濟效益評估研究」,水利產業論壇論文研討會,2010年。
楊崇明、蘇政賢、黃敏惠,「智慧型電子式水表在自來水管理之探究」,水利產業研討會,2016年。
楊聰仁,「腐蝕概論」,防蝕工程,第6卷第2期,1992年。
蔡利局,「氧化還原電位對底泥孔隙水中化學物質濃度影響之潛勢」,嘉南藥理科技大學環境工程與科學研究所專題研究計畫成果報告,2003年。
電子全文 電子全文(網際網路公開日期:20220417)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔