跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃景玄
研究生(外文):Huang, Ching-Hsuan
論文名稱:合成金屬有機架構物碳化氧化銅材料用於去除環丙沙星以及去除機制
論文名稱(外文):Synthesis of CuxO-carbonized MOF materials for the removal of ciprofloxacin and its mechanism
指導教授:白曛綾董瑞安
指導教授(外文):Bai, Hsun-LingDoong, Ruey-An
口試委員:白曛綾董瑞安黃志彬林坤儀
口試委員(外文):Bai, Hsun-LingDoong, Ruey-AnHuang, Chih-PinLin, Kun-Yi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:128
中文關鍵詞:金屬有機架構物金屬有機架構物碳化氧化銅材料吸附光降解環丙沙星
外文關鍵詞:metal organic frameworkCuxO-carbonized MOFadsorptionphotodegradationciprofloxacin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
環丙沙星是大量被使用的抗生素之一,在地表水和工廠或醫院廢水中常會發現它們的蹤跡。本論文在於找到技術來提升去除環丙沙星的方式,銅金屬有機架構物具有高度均勻的孔洞結構還有高的比表面積很適合被使用於吸附劑,再加上其能隙是適用於可見光激發,故其有能力作為光觸媒吸附劑。但由於銅金屬有機架構物的能隙太窄(1.6-1.7 eV)在受可見光激發後,可能會因為電子電洞再結合率時間低,所以在光催化降解上備受限制;有些研究指出可以還原銅金屬有機架構物中的二價銅使之部分轉變為一價銅,即可增加電子電洞的再結合率,故本研究使用尿素摻雜銅金屬有機架構物,在5%氫氣/95%氬氣300 C高溫煅燒將銅金屬有機架構物轉換成CuxO-carbonized MOF奈米複合物,目的在於提升光催化劑在可見光465 nm波長中反應的能力用以降解環丙沙星,並且一邊碳化銅金屬有機架構物進而提升吸附污染物的能力。不論是從掃描式電子顯微鏡還是從穿透式電子顯微鏡中都會發現在添加尿素經過300C鍛燒後在CuxO-carbonized MOF周圍都有被一層碳膜所包覆住,而當鍛燒溫度高於300C時碳膜就會被熱解消失;從X射線繞射儀可以看出經過鍛燒後,有二價銅以及一價銅晶體的出現,再從X光射線吸收光譜儀和X-射線光電子光譜儀器的結果得知,金屬有機架構物中的二價銅離子在經過添加尿素和段燒後成功轉換成Cu/Cu2O,並配合去除環丙沙星的結果得知一價銅佔整體銅比例為0.217時有最佳的效益。CuxO-carbonized MOF光觸媒吸附劑可以同時以吸附和光降解的方式去除環丙沙星。由於材料經過高溫碳化後始材料具有對環狀結構良好吸附的能力,也使得材料具有中孔結構可以協助吸附去除;降解去除方面,系統中照可見光時會導致CuxO-carbonized MOF中的兩個氧化銅物種被激發而導致電子電洞分離,接著會分別與氧氣和水反應產生自由基進而破壞污染物,然而系統中還添加過一硫酸氫鉀氧化劑,其能與銅金屬產生良好的作用而產生硫氧自由基也能與污染物反應,過程中的整體去除效率在包含吸附和降解的2小時內有93.2%的去除效果,而此光觸媒吸附劑在連續作用六次後尚能保有85%以上的去除效能。這些結果顯示出CuxO-carbonized MOF是個可靠的光觸媒吸附劑,它具有良好應用在去除抗生素或其他新興污染物的潛力。
Ciprofloxacin (CIP) is one of the most extensively used antibiotics which has been widely detected in surface water and wastewater. The searching of technology for the enhanced degradation of CIP and other antibiotics is therefore needed. In this study, we found copper metal organic framework (Cu MOF) which can serve as a great adsorbent due to its highly ordered porous structures with high surface area. In addition, Cu MOF can be excited by visible light. Cu MOF can be one of the potential materials in integrated photocatalytic adsorbent. However, Cu MOF has too narrow band gap to have a lower time in electron-hole recombination. In order to solve this problem, we have synthesized CuxO-carbonized MOF hybrid by preparing the urea doped copper metal organic framework (MOF) first and then calcined at 300 C to convert the urea doped Cu-MOF into CuxO-carbonized MOF nanocomposites for the enhanced visible-light-responsive photocatalyst for the degradation of CIP at 465 nm. The results no matter in SEM or TEM are all shown that there are carbon surrounding the materials. Cu(I) and Cu(II) species exist after calcination at 300C in the XRD results. The X-ray absorption spectroscopic and XPS result depicts that Cu ions inside MOF can be converted into CuxO-carbonized MOF in the presence of urea at calcination, and subsequently results in the enhanced photoactivity toward CIP degradation. The CuxO-carbonized MOF hybrids exhibits superior photoactivity and adsorption ability to remove CIP.
The total removal efficiency of CIP would be 93.2% of original CIP can be removed after 120 min of adsorption and visible light irradiation and CuxO-carbonized MOF could be reused for over six times with higher than 85% removal efficiency.These results clearly demonstrate that the CuxO-carbonized MOF is a reliable integrated photocatalytic adsorbent, which can open avenue to prepare visible-light-responsive photocatalyst with great potential of application in the decomposition of antibiotics and other emerging pollutants.
目錄
第一章 前言 - 1 -
1.1 研究背景 - 1 -
1.2 研究目的 - 3 -
第二章 文獻回顧 - 4 -
2.1 環丙沙星簡介 - 4 -
2.1.1 環丙沙星的應用 - 4 -
2.1.2 環丙沙星傳輸途徑 - 6 -
2.2 物理去除抗生素 - 8 -
2.3 微生物去除抗生素 - 11 -
2.4 化學去除抗生素 - 13 -
2.4.1 芬頓法 - 14 -
2.4.2 臭氧法 - 16 -
2.4.3 光解和光催化 - 18 -
2.5 光觸媒吸附劑 - 23 -
2.6 金屬有機架構物 - 26 -
2.6.1 銅金屬有機架構物 - 26 -
2.6.2 修飾銅金屬有機架構物 - 30 -
2.6.3 還原銅金屬有機架構物 - 32 -
2.7 過一硫酸氫鉀(KHSO5)氧化劑 - 34 -
第三章 實驗流程與方法 - 39 -
3.1 實驗材料 - 39 -
3.2 研究架構 - 40 -
3.3 材料合成 - 42 -
3.3.1 銅金屬有機架構物合成 - 42 -
3.3.2 含尿素銅金屬有機架構物合成 - 42 -
3.3.3 Cu MOF carbon合成 - 42 -
3.3.4 CuxO-carbonized MOF合成 - 43 -
3.4 材料特性分析 - 43 -
3.4.1 掃描式電子顯微鏡 Scanning electron microscope (SEM) - 43 -
3.4.2 穿透式電子顯微鏡 Transmission Electron Microscopy (TEM) - 43 -
3.4.3 X射線繞射儀 X-ray Diffraction (XRD) - 44 -
3.4.4 比表面積及微孔徑分析儀 Brunauer-Emmett-Teller (BET) - 44 -
3.4.5 傅立葉轉換紅外線光譜儀 Fourier transform infrared spectroscopy (FTIR) - 45 -
3.4.6 X射線吸收光譜儀Soft X-ray absorption spectroscopy (SXAS) - 45 -
3.4.7 X-射線光電子光譜儀 X-ray photoelectron spectroscopy (XPS) - 46 -
3.4.8 熱重分析儀 Thermogravimetric analysis (TGA) - 46 -
3.4.9 紫外光可見光光譜儀和能階 - 47 -
3.4.10界達電位分析 Zeta Potential measurement - 48 -
3.5 實驗步驟 - 49 -
3.5.1 CuxO-carbonized MOF等溫吸附 - 49 -
3.5.2 光催化降解環丙沙星 - 50 -
3.5.3 光催化實驗對污染物之反應速率推求 - 51 -
3.6 水樣分析 - 51 -
3.6.1 高效液相層析儀High Performance Liquid Chromatography (HPLC) - 51 -
3.6.2 高性能液相層析串聯質譜儀 - 51 -
第四章 結果與討論 - 52 -
4.1 銅金屬有機架構物以及其衍生物合成與鑑定 - 52 -
4.1.1 掃描式電子顯微鏡(SEM) - 52 -
4.1.2 穿透式電子顯微鏡(TEM) - 60 -
4.1.3 X射線繞射儀(XRD) - 61 -
4.1.4 比表面積及微孔徑分析儀(BET) - 63 -
4.1.5 傅立葉轉換紅外光線光譜儀(FTIR) - 64 -
4.1.6 X射線吸收光譜儀分析(SXAS) - 66 -
4.1.7 X-射線光電子光譜儀(XPS) - 69 -
4.1.8 熱重分析儀(TGA) - 73 -
4.1.9 材料能隙 - 75 -
4.2 銅金屬有機架構物在可見光降解環丙沙星的應用 - 78 -
4.2.1 不同銅金屬有機架構物對可見光降解環丙沙星的影響 - 78 -
4.2.2 CuxO-carbonized MOF的合成優化 - 79 -
4.2.3 環丙沙星初始濃度對CuxO-carbonized MOF 去除效率的影響 - 84 -
4.2.4 催化劑劑量對環丙沙星去除的影響 - 87 -
4.2.5 最佳反應 - 88 -
4.2.6 不同初始濃度對環丙沙星吸附的影響 - 93 -
4.2.7 不同初始pH下去除環丙沙星溶液的影響 - 97 -
4.2.8 過一硫酸氫鉀對去除環丙沙星的影響 - 100 -
4.2.9 過氧化氫對去除環丙沙星的影響 - 104 -
4.2.10光觸媒催化劑重複利用 - 107 -
4.3 環丙沙星降解機制 - 108 -
第五章 結論 - 116 -
參考文獻 - 118 -
參考文獻
1. Tacconelli, E., et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 2018. 18(3): p. 318-327.
2. Karaolia, P., et al., Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Applied Catalysis B: Environmental, 2018. 224: p. 810-824.
3. Piña, B., et al., On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes – NEREUS COST Action ES1403 position paper. Journal of Environmental Chemical Engineering, 2018.
4. de Sousa, D.N.R., et al., Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, 2018. 205: p. 137-146.
5. Liang, C., et al., ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chemical Engineering Journal, 2018. 344: p. 95-104.
6. Peng, X., et al., Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study. Bioresource Technology, 2018. 249: p. 924-934.
7. Zhang, J., et al., Facile hydrothermal synthesis of magnetic adsorbent CoFe2O4/MMT to eliminate antibiotics in aqueous phase: tetracycline and ciprofloxacin. Environmental Science and Pollution Research, 2019. 26(1): p. 215-226.
8. Yahya, N., et al., A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering, 2018. 6(6): p. 7411-7425.
9. Munoz, M., et al., Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catalysis Today, 2018. 313: p. 142-147.
10. Zhang, X., et al., Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of environmental management, 2016. 172: p. 193-200.
11. Wang, J.L. and L.J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 2012. 42(3): p. 251-325.
12. Sreeja, P.H. and K.J. Sosamony, A Comparative Study of Homogeneous and Heterogeneous Photo-fenton Process for Textile Wastewater Treatment. Procedia Technology, 2016. 24: p. 217-223.
13. Athanasekou, C.P., V. Likodimos, and P. Falaras, Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering, 2018. 6(6): p. 7386-7394.
14. .
15. Hooper, D., et al., Mechanisms of action of and resistance to ciprofloxacin. The American journal of medicine, 1987. 82(4A): p. 12-20.
16. Goldstein, M.H., R.P. Kowalski, and Y.J. Gordon, Emerging fluoroquinolone resistance in bacterial keratitis: A 5-year review11The authors have no proprietary interest in the products discussed in this article. Ophthalmology, 1999. 106(7): p. 1213-1318.
17. Yao, H., et al., Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source. Water, Air, & Soil Pollution, 2012. 224(1): p. 1370.
18. Trouchon, T. and S. Lefebvre, A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016. 06(02): p. 40-58.
19. Jalil, M.E.R., M. Baschini, and K. Sapag, Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science, 2015. 114: p. 69-76.
20. Xiong, W., et al., Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere, 2018. 210: p. 1061-1069.
21. Suzuki, S. and P.T.P. Hoa, Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina. Frontiers in microbiology, 2012. 3: p. 67.
22. Hirsch, R., et al., Occurrence of antibiotics in the aquatic environment. Science of the Total environment, 1999. 225(1-2): p. 109-118.
23. McArdell, C.S., et al., Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science & Technology, 2003. 37(24): p. 5479-5486.
24. Karthikeyan, K. and M.T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 2006. 361(1-3): p. 196-207.
25. Miao, X.-S., et al., Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental science & technology, 2004. 38(13): p. 3533-3541.
26. Tong, L., et al., Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. Science of the Total Environment, 2014. 497: p. 180-187.
27. Harms, A., E. Maisonneuve, and K. Gerdes, Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 2016. 354(6318): p. aaf4268.
28. Homem, V. and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review. Journal of environmental management, 2011. 92(10): p. 2304-2347.
29. Rodayan, A., et al., Linking drugs of abuse in wastewater to contamination of surface and drinking water. Environ Toxicol Chem, 2016. 35(4): p. 843-9.
30. Teodosiu, C., et al., Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. Journal of Cleaner Production, 2018.
31. Kim, S., et al., Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chemical Engineering Journal, 2018. 335: p. 896-914.
32. Ahmed, M.B., et al., Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of The Total Environment, 2015. 532: p. 112-126.
33. Tan, X., et al., Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015. 125: p. 70-85.
34. Fu, H., et al., Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. Journal of Environmental Sciences, 2017. 56: p. 145-152.
35. Wang, Z., et al., Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environmental Science & Technology, 2009. 44(3): p. 978-984.
36. Tong, X.-j., et al., Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 2011. 172(2-3): p. 828-834.
37. Yuan, J.-H., R.-K. Xu, and H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 2011. 102(3): p. 3488-3497.
38. Ötker, H.M. and I. Akmehmet-Balcıoğlu, Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. Journal of Hazardous Materials, 2005. 122(3): p. 251-258.
39. Bui, T.X. and H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. Journal of Hazardous Materials, 2009. 168(2): p. 602-608.
40. Xu, L., et al., Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chemical Engineering Journal, 2011. 174(1): p. 221-230.
41. O’Connell, D.W., C. Birkinshaw, and T.F. O’Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource technology, 2008. 99(15): p. 6709-6724.
42. Wang, S., et al., Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere, 2006. 65(1): p. 82-87.
43. Mohsen-Nia, M., P. Montazeri, and H. Modarress, Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination, 2007. 217(1-3): p. 276-281.
44. Zularisam, A., A. Ismail, and R. Salim, Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination, 2006. 194(1-3): p. 211-231.
45. Koyuncu, I., et al., Removal of hormones and antibiotics by nanofiltration membranes. Journal of Membrane Science, 2008. 309(1): p. 94-101.
46. Copete-Pertuz, L.S., et al., Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Science of The Total Environment, 2018. 630: p. 1195-1204.
47. Liao, X., et al., Antibiotic sulfanilamide biodegradation by acclimated microbial populations. Applied microbiology and biotechnology, 2016. 100(5): p. 2439-2447.
48. Liao, X., et al., Application of conventional and O3-BAC processes to treat organic matter and antibiotic pollutants in a lake in East China.
49. Aydin, S., Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta. Applied Microbiology and Biotechnology, 2016. 100(14): p. 6491-6499.
50. Cetecioglu, Z., et al., Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. Sci Total Environ, 2015. 536: p. 667-674.
51. Yang, C.-W., W.-C. Hsiao, and B.-V. Chang, Biodegradation of sulfonamide antibiotics in sludge. Chemosphere, 2016. 150: p. 559-565.
52. .
53. Buxton, G.V., et al., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution. Journal of physical and chemical reference data, 1988. 17(2): p. 513-886.
54. Mirzaei, A., et al., Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review. Chemosphere, 2017. 174: p. 665-688.
55. <放流水標準(全條文).pdf>.
56. Velásquez, M., et al., Oxidative degradation of sulfathiazole by Fenton and photo-Fenton reactions. Journal of Environmental Science and Health, Part A, 2014. 49(6): p. 661-670.
57. Elmolla, E. and M. Chaudhuri, Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. Journal of hazardous materials, 2009. 170(2-3): p. 666-672.
58. Giri, A.S. and A.K. Golder, Fenton, photo-fenton, H2O2 photolysis, and TiO2 photocatalysis for dipyrone oxidation: drug removal, mineralization, biodegradability, and degradation mechanism. Industrial & Engineering Chemistry Research, 2014. 53(4): p. 1351-1358.
59. Vergili, I. and S. Gencdal, Applicability of combined Fenton oxidation and nanofiltration to pharmaceutical wastewater. Desalination and Water Treatment, 2015. 56(13): p. 3501-3509.
60. Guo, R., X. Xie, and J. Chen, The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system. Environmental technology, 2015. 36(7): p. 844-851.
61. .
62. Andreozzi, R., et al., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 1999. 53(1): p. 51-59.
63. Oturan, M.A. and J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 2014. 44(23): p. 2577-2641.
64. Sotelo, J., et al., Henry's law constant for the ozone-water system. Water Research, 1989. 23(10): p. 1239-1246.
65. Zwiener, C. and F. Frimmel, Oxidative treatment of pharmaceuticals in water. Water Research, 2000. 34(6): p. 1881-1885.
66. Andreozzi, R., et al., Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research, 2002. 36(11): p. 2869-2877.
67. Adams, C., et al., Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of environmental engineering, 2002. 128(3): p. 253-260.
68. Li, K., et al., Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere, 2008. 72(3): p. 473-478.
69. Huber, M.M., et al., Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental science & technology, 2003. 37(5): p. 1016-1024.
70. Kim, I., N. Yamashita, and H. Tanaka, Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials, 2009. 166(2-3): p. 1134-1140.
71. Wols, B. and C. Hofman-Caris, Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water research, 2012. 46(9): p. 2815-2827.
72. Reyes, C., et al., Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 184(1-2): p. 141-146.
73. Elmolla, E.S. and M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 2010. 252(1-3): p. 46-52.
74. Dimitrakopoulou, D., et al., Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. Journal of environmental management, 2012. 98: p. 168-174.
75. Lester, Y., D. Avisar, and H. Mamane, Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process. Environmental technology, 2010. 31(2): p. 175-183.
76. Guo, W., et al., Degradation of sulfadiazine in water by a UV/O 3 process: performance and degradation pathway. RSC advances, 2016. 6(62): p. 57138-57143.
77. Shaykhi Mehrabadi, Z., Performance of advanced oxidation process (UV/O3/H2O2) degrading amoxicillin wastewater: A comparative study. Journal of Applied Research in Water and Wastewater, 2016. 3(1): p. 222-231.
78. Wang, X., et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 2009. 8(1): p. 76.
79. Wen, J., et al., A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017. 391: p. 72-123.
80. Zhu, Z., et al., Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Applied Catalysis B: Environmental, 2016. 182: p. 115-122.
81. Xue, J., et al., Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS applied materials & interfaces, 2015. 7(18): p. 9630-9637.
82. Hong, Y., et al., Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chemical Engineering Journal, 2016. 299: p. 74-84.
83. Zhao, Y., et al., Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. Journal of Colloid and Interface Science, 2018. 523: p. 7-17.
84. de Luna, M.D.G., L.K.B. Paragas, and R.-A. Doong, Insights into the rapid elimination of antibiotics from aqueous media by tunable C3N4 photocatalysts: Effects of dopant amount, co-existing ions and reactive oxygen species. Science of The Total Environment, 2019. 669: p. 1053-1061.
85. Yang, Z., et al., g‐C3N4/TiO2 Nanocomposites for Degradation of Ciprofloxacin under Visible Light Irradiation. ChemistrySelect, 2016. 1(18): p. 5679-5685.
86. Colmenares, J.C., P. Lisowski, and D. Łomot, A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: a versatile green tool for water purification. RSC Advances, 2013. 3(43): p. 20186-20192.
87. Aliofkhazraei, M., et al., Graphene science handbook: Size-dependent properties. 2016: CRC Press.
88. Burns, R.A., et al., Effect of inorganic ions in heterogeneous photocatalysis of TCE. Journal of Environmental Engineering, 1999. 125(1): p. 77-85.
89. Zhang, W., Semantic prosody and ESL/EFL vocabulary pedagogy. TESL Canada Journal, 2009: p. 1-12.
90. Wang, N., et al., Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation. Separation and Purification Technology, 2019. 211: p. 673-683.
91. Noorimotlagh, Z., et al., The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism. Journal of Hazardous Materials, 2018. 350: p. 108-120.
92. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to metal–organic frameworks. 2012, ACS Publications.
93. Rosi, N.L., et al., Hydrogen storage in microporous metal-organic frameworks. Science, 2003. 300(5622): p. 1127-1129.
94. Zhu, J., et al., A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO2 Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018. 140(3): p. 993-1003.
95. Fu, Y., et al., An Amine‐Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible‐Light‐Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 2012. 51(14): p. 3364-3367.
96. Duan, C., et al., Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chemical Engineering Journal, 2018. 334: p. 1477-1483.
97. Raoof, J.-B., et al., MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction. Energy, 2015. 90: p. 1075-1081.
98. Liu, Y., et al., Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS applied materials & interfaces, 2013. 5(15): p. 7654-7658.
99. Xiong, Y., et al., A New Copper (I)–Tetrahydrosalen‐Catalyzed Asymmetric Henry Reaction and Its Extension to the Synthesis of (S)‐Norphenylephrine. Chemistry–A European Journal, 2007. 13(3): p. 829-833.
100. Schlichte, K., T. Kratzke, and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3 (BTC) 2. Microporous and Mesoporous Materials, 2004. 73(1-2): p. 81-88.
101. Li, Q., et al., A copper-organic framework as scavenger towards organic dyes pollutants via physical adsorption and visible-light photodegradation. Inorganic Chemistry Communications, 2017. 85: p. 78-83.
102. Mehraj, O., et al., Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. Journal of Materials Science: Materials in Electronics, 2018. 29(4): p. 3358-3369.
103. Sofi, F.A., K. Majid, and O. Mehraj, The visible light driven copper based metal-organic-framework heterojunction: HKUST-1@ Ag-Ag3PO4 for plasmon enhanced visible light photocatalysis. Journal of Alloys and Compounds, 2018. 737: p. 798-808.
104. Zhang, Y.-F., et al., Magnetic Fe3O4@ C/Cu and Fe3O4@ CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Applied Catalysis B: Environmental, 2014. 144: p. 863-869.
105. Bao, Y., et al., One-step construction of heterostructured metal-organics@ Bi2O3 with improved photoinduced charge transfer and enhanced activity in photocatalytic degradation of sulfamethoxazole under solar light irradiation. Chemosphere, 2018. 205: p. 396-403.
106. Pal, S., et al., Low temperature solution processed ZnO/CuO heterojunction photocatalyst for visible light induced photo-degradation of organic pollutants. CrystEngComm, 2015. 17(6): p. 1464-1476.
107. Liu, S.-H., Y.-S. Wei, and J.-S. Lu, Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts. Chemosphere, 2016. 154: p. 118-123.
108. Lei, Z., L. Lu, and X. Zhao, The electrocapacitive properties of graphene oxide reduced by urea. Energy & Environmental Science, 2012. 5(4): p. 6391-6399.
109. Niu, H., et al., MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst. Microporous and Mesoporous Materials, 2016. 219: p. 48-53.
110. Wang, Z., et al., In situ Carbothermal Synthesis of Nanoscale Zero-Valent Iron Functionalized Porous Carbon from Metal-Organic Frameworks for Efficient Detoxification of Chromium(VI). European Journal of Inorganic Chemistry, 2018. 2018(1): p. 23-30.
111. Yang, Y., et al., Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. Journal of Solid State Chemistry, 2018. 258: p. 582-587.
112. Olmez-Hanci, T. and I. Arslan-Alaton, Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal, 2013. 224: p. 10-16.
113. Wang, J. and S. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 2018. 334: p. 1502-1517.
114. Feng, Y., et al., Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chemical Engineering Journal, 2015. 280: p. 514-524.
115. Wang, Y., et al., Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin. Separation and Purification Technology, 2019. 212: p. 536-544.
116. Pugazhenthiran, N., et al., Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light. Chemical Engineering Journal, 2014. 241: p. 401-409.
117. Zhao, J., et al., Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/Mn3O4/MnO2 valence state heterojunction. Chemical Engineering Journal, 2018. 353: p. 805-813.
118. Chen, C., et al., Sulfur-doped copper-cobalt bimetallic oxides with abundant Cu (I): A novel peroxymonosulfate activator for chloramphenicol degradation. Chemical Engineering Journal, 2019. 361: p. 1304-1316.
119. Yan, J., et al., Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: Optimization, degradation pathways and toxicity evaluation. Chemical Engineering Journal, 2019. 359: p. 1097-1110.
120. Das, T.K., et al., Influence of surface disorder, oxygen defects and bandgap in TiO2 nanostructures on the photovoltaic properties of dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2016. 144: p. 194-209.
121. .
122. Bull, H.B., et al., The pH of urea solutions. Archives of Biochemistry and Biophysics, 1964. 104(2): p. 297-304.
123. .
124. Armetta, F., et al., Non-conventional Ce: YAG nanostructures via urea complexes. Scientific reports, 2019. 9(1): p. 3368.
125. Boomadevi, S., R. Dhanasekaran, and P. Ramasamy, Investigations on nucleation and growth kinetics of urea crystals from methanol. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 2002. 37(2‐3): p. 159-168.
126. Saranraj, A., et al., Growth of bulk single crystals of urea for photonic applications. Electronic Materials Letters, 2018. 14(1): p. 7-13.
127. <12_chapter 4 (1).pdf>.
128. Al-Janabi, N., et al., Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015. 281: p. 669-677.
129. Liu, Y., P. Ghimire, and M. Jaroniec, Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. Journal of colloid and interface science, 2019. 535: p. 122-132.
130. Homayoonnia, S. and S. Zeinali, Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sensors and Actuators B: Chemical, 2016. 237: p. 776-786.
131. Abdelhameed, R.M., et al., Cu-BTC metal-organic framework natural fabric composites for fuel purification. Fuel Processing Technology, 2017. 159: p. 306-312.
132. Zhong, Y., et al., Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine. Applied Surface Science, 2014. 295: p. 253-259.
133. Jiang, P., et al., Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu (110) using x-ray photoelectron and absorption spectroscopy. The Journal of chemical physics, 2013. 138(2): p. 024704.
134. Gago, R., et al., Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications. arXiv preprint arXiv:0706.2258, 2007.
135. Yu, L., et al., Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy, 2019. 60: p. 576-582.
136. Wei, B., et al., Cu2O–CuO Hollow Nanospheres as a Heterogeneous Catalyst for Synergetic Oxidation of CO. The Journal of Physical Chemistry C, 2018. 122(34): p. 19524-19531.
137. Wang, Y., et al., Synthesis of porous Cu 2 O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. Journal of Materials Chemistry A, 2015. 3(24): p. 12796-12803.
138. Song, Y., et al., Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Advances, 2017. 7(17): p. 10592-10600.
139. Cheng, J., et al., Preparation of a Cu (BTC)-rGO catalyst loaded on a Pt deposited Cu foam cathode to reduce CO 2 in a photoelectrochemical cell. RSC Advances, 2018. 8(56): p. 32296-32303.
140. Cui, Z., H. Yang, and X. Zhao, Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites. Materials Science and Engineering: B, 2018. 229: p. 160-172.
141. Ding, J., et al., Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes. Applied Catalysis B: Environmental, 2018. 221: p. 626-634.
142. Di, J., et al., Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Applied Catalysis B: Environmental, 2015. 168: p. 51-61.
143. Xia, J., et al., Ionic liquid-induced strategy for carbon quantum dots/BiOX (X= Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Applied Catalysis B: Environmental, 2016. 181: p. 260-269.
144. Yang, S.J., et al., MOF-derived ZnO and ZnO@ C composites with high photocatalytic activity and adsorption capacity. Journal of hazardous materials, 2011. 186(1): p. 376-382.
145. Wang, Y., et al., Optimization of photoelectrochemical performance in Pt-modified p-Cu2O/n-Cu2O nanocomposite. Nanotechnology, 2018. 29(14): p. 145402.
146. Yang, Y., et al., Cu 2 O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Scientific reports, 2016. 6: p. 35158.
147. Uivarosi, V., Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. Molecules, 2013. 18(9).
148. Lan, R., W. Su, and J. Li, Preparation and Catalytic Performance of Expanded Graphite for Oxidation of Organic Pollutant. Catalysts, 2019. 9(3): p. 280.
149. Yin, R., et al., Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms. Chemical Engineering Journal, 2018. 335: p. 145-153.
150. Feng, M., et al., Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. Journal of hazardous materials, 2018. 344: p. 1136-1154.
151. Khan, J.A., et al., Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5−. Chemical Engineering Journal, 2014. 252: p. 393-403.
152. Gupta, A. and A. Garg, Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere, 2018. 193: p. 1181-1188.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊