(3.237.20.246) 您好!臺灣時間:2021/04/15 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許芷瑄
研究生(外文):Hsu, Chih-Hsuan
論文名稱:運用光遺傳系統 (RanTRAP) 研究RanGTPase對於 神經細胞非中心體微管聚核之調控
論文名稱(外文):Using an optogenetic platform (RanTRAP) to study the involvement of Ran GTPase in regulating acentrosomal microtubule nucleation in neurons
指導教授:黃兆祺
指導教授(外文):Hwang, Eric
口試日期:2018-08-24
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:74
中文關鍵詞:微管成核光調控系統光誘導蛋白局部光激活
外文關鍵詞:non-centrosomalLOVTRAPlight-inducible proteinfocal light activation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微管是神經細胞中含量最高的細胞骨架,而微管的正確生成對於神經系統的發育也非常重要。目前已知神經細胞中微管的生成依靠著非中心體組織中心聚核而成。我們實驗室近期發現TPX2是神經細胞中一種非中心體組織聚核蛋白,而Ran GTPase似乎是它的上游調節因子。此外,使神經細胞大量表現持續活化態或顯性抑制態的Ran突變體會影響神經突末端非中心體微管聚核。由於Ran參與核質運輸系統,如果活化或抑制神經細胞中所有的Ran,可能會導致神經存活率大幅下降或產生神經型態缺陷。所以在這篇論文中,我們試圖運用光遺傳系統達到在時間上與空間特定位置調控Ran的活性,我們在這稱此系統為RanTRAP,我們並以此系統研究Ran對於神經細胞的非中心體微管聚核的影響。首先,我們驗證了RanTRAP的光活化能力,並測試出在海拉細胞中局部進行光活化的最佳條件。其次,我們證實了在黑暗環境下,RanTRAP可以屏障Ran的功能,而在光活化Ran後可被釋放到細胞質中,並恢復其功能。最後,我們發現在神經突特定位置局部增加持續活化態Ran的濃度,可以促進該區域的非中心體微管聚核。這些結果代表Ran GTPase參與了神經細胞的非中心體微管聚核。此光遺傳RanTRAP系統在未來將使我們能夠進一步探討非中心體微管對神經型態的影響。
Microtubule is the most abundant cytoskeleton in neurons and the generation of microtubules is essential for the proper development of the nervous system. It has been shown that the generation of microtubules in post-mitotic neurons depends on nucleation by acentrosomal microtubule-organizing centers (MTOCs). Previous studies in our lab found that TPX2 is an acentrosomal nucleator in neurons and Ran GTPase appears to be its upstream regulator. In addition, overexpressing the constitutively active or dominant negative Ran mutants in neurons influences acentrosomal microtubule nucleation at the neurite tips. Since Ran participates in nucleocytoplasmic transport, globally activating or inactivating Ran may result in neuronal survival and morphogenetic defects. In this thesis work, we attempted to establish an optogenetic tool called RanTRAP that is capable of spatiotemporally controlling the activation of Ran, to study the acentrosomal microtubule nucleation in neurons. First, we validated the photoactivation capability of constructed RanTRAP and optimized the locally exposure condition in HeLa cells. Second, we confirmed that RanTRAP sequesters Ran mutants in the dark while allowing Ran mutants to be released into the cytosol upon local photoactivation. Finally, we found that locally increasing the concentration of a constitutively active Ran mutant promotes acentrosomal microtubule nucleation in the photoactivated sites in neurons. These results indicate that Ran GTPase is involved in acentrosomal microtubule nucleation in neurons. This optogenetic RanTRAP system will enable us to further examine the effect of acentrosomal microtubules on neuronal morphology in the future.
摘要 I
Abstract II
Abbreviation VIII
I. Introduction 1
1.1 Neuronal morphogenesis is regulated by the microtubule cytoskeleton 1
1.2 The importance of ascentrosomal microtubule organizing center in neurons 2
1.3 The regulation of TPX2 by Ran GTPase in microtubule nucleation 3
1.4 Ran GTPase affect acentrosomal microtubule formation in neurons 3
1.5 The optogenetic LOVTRAP system 4
1.6 Specific aim 5
II. Materials 6
2.1 Mouse strain 6
2.2 Bacterial strains 6
2.3 Cell lines 6
2.4 Plasmids 6
2.5 Primers 7
2.6 Restriction enzymes 8
2.7 Commercial material list 8
2.8 Buffers and solutions 10
2.9 Antibodies 14
2.9.1 Primary antibodies 14
2.9.2 Secondary antibodies 15
III. Methods 16
3.1. Mammalian expression plasmid construction 16
3.1.1 pTriEx-mCherry-ZDK1-RanQ69L/T24N 16
3.1.2 pTriEx-NTOM20-mVenus-LOV2-I539E 17
3.1.3 pTriEx-mVenus-LOV2wt 18
3.1.4 pTriEx-NTOM20-LOV2wt/I539E/C450A 18
3.1.5 pCAG-KPNB1-EGFP 19
3.2 Bacterial transformation 20
3.3 Immunoblot 20
3.4 Cell cultures 21
3.4.1 HeLa cell culture 21
3.4.2 Primary neuron culture 21
3.5 Preparing poly-L-lysine-coated coverslips or α-dish 22
3.6 Lipofectamine transfection 22
3.6.1 Lipofectamine transfection of HeLa cells 22
3.6.2 Lipofectamine transfection of primary neuron 23
3.7 Cell fixations 23
3.7.1 Formaldehyde fixation 23
3.7.2 Extracting cytosolic protein before cell fixation (pre-extraction) 23
3.8 Indirect Immunofluorescence staining (IF) 24
3.9 Mitotracker staining 24
3.10 HeLa cells synchronization by double thymidine arrest 25
3.11 Synchronizing HeLa cells by nocodazole 25
3.12 Images acquisition 25
3.13 Photoactivation 26
3.14 Images analysis 27
3.15 Statistical analysis 28
IV. Results 29
4.1 Optimization of the condition for LOVTRAP system in HeLa cells 29
4.1.1 Confirming the locolization of LOVTRAP proteins in HeLa cells 29
4.1.2 Optimizing transfection condition of LOVTRAP plasmids in HeLa cells 29
4.1.3 Examine the minimal irradiation to locally photoactivate LOVTRAP system in HeLa cells 30
4.1.4 Examine the dynamic of release mCherry-ZDK after locally photoactivate LOVTRAP system in HeLa cells 31
4.1.5 Optimizing light irradiation regime to locally photoactivate LOVTRAP system in HeLa cells 31
4.2 Constructing and validating photoactivatable RanTRAP in HeLa cells 32
4.2.1 Constructing RanTRAP system 32
4.2.2 Examining the localization of mCherry-ZDK-Ran in HeLa cells 32
4.2.3 Examining the trapping and photoactivatable capability of RanTRAP in HeLa cells 33
4.2.4. Functional validation of RanTRAP system in HeLa cells 33
4.2.5 Combining RanTRAP and the microtubule plus-end dynamics assay in HeLa cells 35
4.3 Optimizing and utilizing the photoactivatable RanTRAP system in neurons to study acentrosomal microtubule nucleation 35
4.3.1 NTOM20 target Ran protein to mitochondria along the neurite 35
4.3.2 Optimizing transfection condition of RanTRAP plasmids in neurons 36
4.3.3 Locally phototactive RanTRAP system in neurons 36
4.3.4 Combining RanTRAP and the microtubule plus-end dynamics assay in neurons 37
4.3.5 Locally producing RanGTP promotes acentrosomal microtubule nucleation along the neurite 37
V. Discussion 39
5.1 An optogenetic platform RanTRAP system to study acentrosomal microtubule nucleation 39
5.2 The filamentous distribution of mCherry-ZDK protein in HeLa cells 40
5.3 The perinuclear clustering distribution of mitochondria in RanTRAP expressing HeLa cells 40
5.4 RanTRAP sequester Ran mutant function in the dark by sterically blocking 40
5.5 The application of RanTRAP system in neuronal morphogenesis 41
VI. Reference 42
VII. Figures 45
VIII. Appendix 68
Ahmad, F.J., and P.W. Baas. 1995. Microtubules released from the neuronal centrosome are transported into the axon. Journal of Cell Science. 108:2761.
Ahmad, F.J., C.J. Echeverri, R.B. Vallee, and P.W. Baas. 1998. Cytoplasmic Dynein and Dynactin Are Required for the Transport of Microtubules into the Axon. The Journal of Cell Biology. 140:391.
Ahmad, F.J., W. Yu, F.J. McNally, and P.W. Baas. 1999. An Essential Role for Katanin in Severing Microtubules in the Neuron. The Journal of Cell Biology. 145:305.
Bischoff, F.R., C. Klebe, J. Kretschmer, A. Wittinghofer, and H. Ponstingl. 1994. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proceedings of the National Academy of Sciences. 91:2587.
Carazo-Salas, R.E., G. Guarguaglini, O.J. Gruss, A. Segref, E. Karsenti, and I.W. Mattaj. 1999. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature. 400:178.
Chen, W.-S., Y.-J. Chen, Y.-A. Huang, B.-Y. Hsieh, H.-C. Chiu, P.-Y. Kao, C.-Y. Chao, and E. Hwang. 2017. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Scientific Reports. 7:42297.
Ciciarello, M., R. Mangiacasale, C. Thibier, G. Guarguaglini, E. Marchetti, B. Di Fiore, and P. Lavia. 2004. Importin β is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. Journal of Cell Science. 117:6511.
Daniels, M.P. 1972. Colchicine inhibition of nerve fiber formation in vitro. The Journal of Cell Biology. 53:164.
Dent, E.W., A.V. Kwiatkowski, L.M. Mebane, U. Philippar, M. Barzik, D.A. Rubinson, S. Gupton, J.E. Van Veen, C. Furman, J. Zhang, A.S. Alberts, S. Mori, and F.B. Gertler. 2007. Filopodia are required for cortical neurite initiation. Nature Cell Biology. 9:1347.
Fallet-Bianco, C., A. Laquerrière, K. Poirier, F. Razavi, F. Guimiot, P. Dias, L. Loeuillet, K. Lascelles, C. Beldjord, N. Carion, A. Toussaint, N. Revencu, M.-C. Addor, B. Lhermitte, M. Gonzales, J. Martinovich, B. Bessieres, M. Marcy-Bonnière, F. Jossic, P. Marcorelles, P. Loget, J. Chelly, and N. Bahi-Buisson. 2014. Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathologica Communications. 2:69.
Görlich, D., and I.W. Mattaj. 1996. Nucleocytoplasmic Transport. Science. 271:1513.
Geyer, J.P., R. Döker, W. Kremer, X. Zhao, J. Kuhlmann, and H.R. Kalbitzer. 2005. Solution Structure of the Ran-binding Domain 2 of RanBP2 and its Interaction with the C Terminus of Ran. Journal of Molecular Biology. 348:711-725.
Gruss, O.J., R.E. Carazo-Salas, C.A. Schatz, G. Guarguaglini, J. Kast, M. Wilm, N. Le Bot, I. Vernos, E. Karsenti, and I.W. Mattaj. 2001. Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin α on TPX2 Activity. Cell. 104:83-93.
Guglielmi, G., H.J. Falk, and S. De Renzis. 2016. Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis. Trends in Cell Biology. 26:864-874.
Halavaty, A.S., and K. Moffat. 2007. N- and C-Terminal Flanking Regions Modulate Light-Induced Signal Transduction in the LOV2 Domain of the Blue Light Sensor Phototropin 1 from Avena sativa. Biochemistry. 46:14001-14009.
Harper, S.M., L.C. Neil, and K.H. Gardner. 2003. Structural Basis of a Phototropin Light Switch. Science. 301:1541.
Hutchins, J.R.A., W.J. Moore, and P.R. Clarke. 2009. Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biology. 10:66.
Izaurralde, E., U. Kutay, C. von Kobbe, I.W. Mattaj, and D. Görlich. 1997. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. The EMBO Journal. 16:6535-6547.
Kapitein, Lukas C., and Casper C. Hoogenraad. 2015. Building the Neuronal Microtubule Cytoskeleton. Neuron. 87:492-506.
Kazgan, N., T. Williams, L.J. Forsberg, J.E. Brenman, and R.S. Hegde. 2010. Identification of a Nuclear Export Signal in the Catalytic Subunit of AMP-activated Protein Kinase. Molecular Biology of the Cell. 21:3433-3442.
Keating, T.J., and G.G. Borisy. 1999. Centrosomal and non-centrosomal microtubules. Biology of the Cell. 91:321-329.
Keays, D.A., G. Tian, K. Poirier, G.J. Huang, C. Siebold, J. Cleak, P.L. Oliver, M. Fray, R.J. Harvey, Z. Molnár, M.C. Piñon, N. Dear, W. Valdar, S.D.M. Brown, K.E. Davies, J.N.P. Rawlins, N.J. Cowan, P. Nolan, J. Chelly, and J. Flint. 2007. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans. Cell. 128:45-57.
Li, Y.S., L.X. Qin, J. Liu, W.L. Xia, J.P. Li, H.L. Shen, and W.Q. Gao. 2016. GIT1 enhances neurite outgrowth by stimulating microtubule assembly. Neural Regeneration Research. 11:427-434.
Lim, S.S., K.J. Edson, P.C. Letourneau, and G.G. Borisy. 1990. A test of microtubule translocation during neurite elongation. The Journal of Cell Biology. 111:123.
Möglich, A., R.A. Ayers, and K. Moffat. 2009. Structure and Signaling Mechanism of Per-ARNT-Sim Domains. Structure. 17:1282-1294.
Moon, H.M., and A. Wynshaw-Boris. 2012. Cytoskeleton in action: lissencephaly, a neuronal migration disorder. Wiley Interdisciplinary Reviews: Developmental Biology. 2:229-245.
Moritz, M., M.B. Braunfeld, V. Guénebaut, J. Heuser, and D.A. Agard. 2000. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biology. 2:365.
Moroianu, J., G. Blobel, and A. Radu. 1996. Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proceedings of the National Academy of Sciences. 93:7059.
Nguyen, M.M., C.J. McCracken, E.S. Milner, D.J. Goetschius, A.T. Weiner, M.K. Long, N.L. Michael, S. Munro, and M.M. Rolls. 2014. γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Molecular Biology of the Cell. 25:2039-2050.
Nilsson, J., K. Weis, and J. Kjems. 2002. The C-Terminal Extension of the Small GTPase Ran is Essential for Defining the GDP-Bound Form. Journal of Molecular Biology. 318:583-593.
Ori-McKenney, Kassandra M., Lily Y. Jan, and Y.-N. Jan. 2012. Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons. Neuron. 76:921-930.
Petry, S., A.C. Groen, K. Ishihara, T.J. Mitchison, and R.D. Vale. 2013. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell. 152:768-777.
Poulain, F.E., and A. Sobel. 2010. The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Molecular and Cellular Neuroscience. 43:15-32.
Salomon, M., J.M. Christie, E. Knieb, U. Lempert, and W.R. Briggs. 2000. Photochemical and Mutational Analysis of the FMN-Binding Domains of the Plant Blue Light Receptor, Phototropin. Biochemistry. 39:9401-9410.
Schatz, C.A., R. Santarella, A. Hoenger, E. Karsenti, I.W. Mattaj, O.J. Gruss, and R.E. Carazo-Salas. 2003. Importin α-regulated nucleation of microtubules by TPX2. The EMBO Journal. 22:2060-2070.
Sepp, K.J., P. Hong, S.B. Lizarraga, J.S. Liu, L.A. Mejia, C.A. Walsh, and N. Perrimon. 2008. Identification of Neural Outgrowth Genes using Genome-Wide RNAi. PLoS Genetics. 4:e1000111.
Sánchez-Huertas, C., F. Freixo, R. Viais, C. Lacasa, E. Soriano, and J. Lüders. 2016. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nature Communications. 7:12187.
Stewart, M., H.M. Kent, and A.J. McCoy. 1998. The structure of the Q69L mutant of GDP-ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2)11Edited by I. B. Holland. Journal of Molecular Biology. 284:1517-1527.
Stiess, M., N. Maghelli, L.C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C.C. Hoogenraad, I.M. Tolić-Nørrelykke, and F. Bradke. 2010. Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation. Science. 327:704-707.
Swartz, T.E., S.B. Corchnoy, J.M. Christie, J.W. Lewis, I. Szundi, W.R. Briggs, and R.A. Bogomolni. 2001. The Photocycle of a Flavin-binding Domain of the Blue Light Photoreceptor Phototropin. Journal of Biological Chemistry. 276:36493-36500.
Vetter, I.R., A. Arndt, U. Kutay, D. Görlich, and A. Wittinghofer. 1999. Structural View of the Ran–Importin β Interaction at 2.3 Å Resolution. Cell. 97:635-646.
Wang, H., M. Vilela, A. Winkler, M. Tarnawski, I. Schlichting, H. Yumerefendi, B. Kuhlman, R. Liu, G. Danuser, and K.M. Hahn. 2016. LOVTRAP, An Optogenetic System for Photo-induced Protein Dissociation. Nature Methods. 13:755-758.
Witte, H., D. Neukirchen, and F. Bradke. 2008. Microtubule stabilization specifies initial neuronal polarization. The Journal of Cell Biology. 180:619-632.
Wittmann, T., M. Wilm, E. Karsenti, and I. Vernos. 2000. Tpx2, a Novel Xenopus Map Involved in Spindle Pole Organization. The Journal of Cell Biology. 149:1405-1418.
Wu, Y.I., D. Frey, O.I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, and K.M. Hahn. 2009. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature. 461:104.
電子全文 電子全文(網際網路公開日期:20230903)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔