(3.220.231.235) 您好!臺灣時間:2021/03/07 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴世鈞
研究生(外文):Lai, Shih-Chun
論文名稱:超級競爭下的策略變化與成長趨勢─以人工智慧產業為例
論文名稱(外文):Strategy Change and Growth Trend under Hypercompetition: A Case Study of Artificial Intelligence Industry
指導教授:唐瓔璋唐瓔璋引用關係張順全張順全引用關係
指導教授(外文):Tang, Ying-ChanChang, Shun-Chuan
口試委員:唐瓔璋張順全吳敏華
口試委員(外文):Tang, Ying-ChanChang, Shun-ChuanWu, Min-Hua
口試日期:2019-05-31
學位類別:碩士
校院名稱:國立交通大學
系所名稱:管理學院經營管理學程
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:超級競爭人工智慧競爭優勢杜邦財務指標紅皇后效應隨機漫步雙元能力貝氏認識論組織學習因果
外文關鍵詞:HypercompetitionArtificial IntelligenceCompetitive AdvantageDuPont Financial IndicatorsRed Queen EffectRandom WalkAmbidextrous AbilityBayesian EpistemologyOrganizational Learning Cause and Effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:0
本研究是第一篇以財務績效指標分析在超級競爭下,人工智慧跨產業領域的策略變化與成長趨勢的論文。

人工智慧的發展隨時間的推進,已引起產業競爭的巨大變化與產業板塊的移動,許多不同產業的企業紛紛投入人工智慧領域與相關應用,造成產業之間競爭劇烈與變化莫測,並將人工智慧產業塑造成「超級競爭」的環境。企業在競爭環境下求成長時,會依據外部環境與對手的變化來調整資源的使用與運用資源的動態能力,並改變整體營運策略。因此,企業策略是動態有變化的,變化結果最終會反映在財務績效上。

基於上述,本研究以杜邦財務指標建構研究架構,分析在超級競爭下,歷經兩個時期後,在人工智慧相關產業的企業經營策略與績效變化。本研究的研究目的如下:
1. 依據杜邦財務指標,分析經營績效優良的人工智慧相關產業的企業在不同時期的企業策略變化與成長趨勢。
2. 以管理理論解釋人工智慧相關產業中,經營績效優良企業的策略變化與成長趨勢。

本研究發現,在人工智慧產業中經營績效優良企業,以人工智慧晶片與資訊科技產業已有明顯的策略變化且有部份企業在財務績效上也呈現成長趨勢,這兩種產業也扮演引領整個人工智慧產業發展的領導角色。本研究也提出台灣企業在人工智慧發展的建議,期望台灣企業在人工智慧上找到屬於自己的利基點,提升台灣整體經濟實力與國家競爭力。

關鍵詞:超級競爭、人工智慧、競爭優勢、杜邦財務指標、紅皇后效應、隨機漫步、雙元能力、貝氏認識論、組織學習因果
This study is the first paper to analyze the strategic changes and growth trends of artificial intelligence across industries under the hypercompetition by using financial performance indicators.

The development of artificial intelligence has induced tremendous change and movement of industrial sectors. Many enterprises in different industries around the world have invested in this field and related application. This condition has incurred severe competition and unpredictable change between different industries and made the artificial industry for a “hypercompetitive” environment. When enterprises strike to grow in a competitive environment, enterprises will adjust the use of resources and dynamic capabilities based on changes in external environment and competitors. Therefore, corporate strategies are dynamic and changeable, and the results of the changes will ultimately be reflected in financial performance.

Based on the above reasons, this study constructs a research framwork based on DuPont financial indicators. Under hypercompetitive environment, this study analyzes the changes in corporate strategy and performance in artificial intelligence related industries after two periods. Follows are the research objectives of this study:
1. According to DuPont financial indicators, analyze the changes and growth trends of corporate strategies of enterprises with excellent business performance in artificial intelligence related industries in different periods.
2. Using management theory to explain the strategic changes and growth trends of enterprises with excellent business performance in artificial intelligence related industries.

This study has revealed that there are obviously strategic changes in the artificial intelligence chip and information technology industries. Some enterprises in these two industries also show growth trends in financial performance, especially the enterprises with excellent business performance. These two industries also play a leading role in leading the development of the whole artificial intelligence industry.

This study also proposes suggestions of the development of artificial intelligence in Taiwan enterprises. Wish Taiwan enterprises will be able to find their own niche points in artificial intelligence and enhance Taiwan's overall economic strength and national competitiveness.

Keywords: Hypercompetition, Artificial Intelligence, Competitive Advantage, DuPont Financial Indicators, Red Queen Effect, Random Walk, Ambidextrous Ability, Bayesian Epistemology, Organizational Learning Cause and Effect
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VI
圖目錄 VII
第 1 章、 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究流程 3
第 2 章、 文獻探討 4
2.1 策略、競爭優勢與企業績效 4
2.2 超級競爭與紅皇后效應 6
2.3 隨機漫步與雙元能力 10
2.4 貝氏認識論與組織學習因果 11
2.5 企業財務績效與競爭優勢 12
2.5.1 資源構型 12
2.5.2 杜邦恆等式 13
2.5.3 杜邦恆等式與資源構型 14
2.6 策略族群與移動障礙 16
第 3 章、 產業回顧與現況 18
3.1 人工智慧的發展歷程 18
3.2 人工智慧技術發展現況 20
3.3 人工智慧產業現況 23
3.4 人工智慧的產業應用領域 28
3.4.1 人工智慧晶片 29
3.4.2 資訊科技 30
3.4.3 第五代行動通訊 32
3.4.4 自動駕駛車與無人機 33
3.4.5 智慧醫療 35
3.4.6 機器人與自動化 36
3.4.7 電子商務 38
第 4 章、 研究方法 40
4.1 研究概念 40
4.2 研究架構 41
4.3 研究變數 42
4.4 研究樣本 45
4.5 資料分析方法 47
4.5.1 因素分析 47
4.5.2 集群分析 47
4.5.3 區別分析 48
第 5 章、 研究結果 49
5.1 敘述統計分析 49
5.2 因素分析 52
5.3 因素命名 54
5.4 集群分析 57
5.5 集群分群驗證 61
5.6 區別分析 62
5.7 策略變化與成長趨勢分析 66
5.8 個案探討 71
第 6 章、 結論與建議 75
6.1 研究結論 75
6.2 台灣企業在人工智慧產業發展的建議 76
6.3 研究限制與未來研究建議 77
參考文獻 78
附錄1 前期ROIC排名與後期ROIC排名 84
附錄2 前後期集群分群 90
附錄3 績效優良企業的前後期ROIC排名變化、策略群組變化與ROIC變化 96
附錄4 The Home Depot, Inc. 2018財務年度綜合損益表 102
附錄5 Xilinx, Inc. 2018財務年度綜合損益表與2019財務年度Q4季報 103
中文文獻
1. 布林優夫森、麥克費 (2014)。第二次機器時代 (一版) (齊若蘭譯)。臺北:遠見天下文化。(原著出版年﹕2014年)
2. 克勞斯‧施瓦布 (2017)。第四次工業革命 (一版) (世界經濟論壇北京代表處譯)。臺北:遠見天下文化。(原著出版年﹕2016年)
3. Richard A. D'Aveni (1998),超優勢競爭 (初版) (許梅芳譯)。臺北:遠流出版事業。(原著出版年﹕1994年)

英文文獻
1. Aaker, D. A. (1984). Strategic Market Management. New York: John Wiley and Sons Inc..
2. Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609.
3. Amir, E., Guan, Y., and Livne, G. (2007). The association of R&D and capital expenditures with subsequent earnings variability. Journal of Business Finance & Accounting, 34(1), 222-246.
4. Arthur, B. W. (1989). Competing technologies, increasing returns, and lock-in by historical events. Economic Journal, 99(394), 116-131.
5. Bachelier, L. (1900). Théorie de la speculation. Annales Scientifiques de l'École Normale Supérieure, 3(17), 21-86.
6. Bain, J. (1956). Barriers to New Competition. Massachusetts: Harvard University Press.
7. Barney J. B. (1991). Firm Based and Sustained Competitive Advantage. Journal of Management, 17(1), 99-120.
8. Barney J. B. (2001). Is the resource-based "view" a useful perspective for strategic management research? Yes. Academy of Management Review, 26(1), 41-56.
9. Barney, J. B. (1986). Strategic factor markets: Expectations, luck and business strategy. Management Science, 42, 1231-1241.
10. Cao, B., Jiang, B., and Timothy K. (2006), "Balancing ROIC and Growth to Build Value. McKinsey on Finance, 19(Spring), 12-16.
11. Caves, R. E., and Porter M. E. (1977). From entry barriers to mobility barriers: Conjectural decisions and contrived deterrence to new competition. Quarterly Journal of Economics, 91(2), 241 - 262.
12. Caves, R. E., and Ghemawat P. (1992). Identifying Mobility Barriers. Strategic Management Journal, 13(1), 1-12.
13. Chen, M. J., Lin, H. C., and Michel, J. G. (2010). Navigating in a hypercompetitive environment: The roles of action aggressiveness and TMT integration. Strategic Management Journal, 31(13), 1410-1430.
14. Chen, E. L., Katila, R., McDonald, R., and Eisenhardt, K.M. (2010). Life in the fast lane: origins of competitive interaction in new vs. established markets. Strategic Management Journal, 31(13), 1527-1547.
15. Cool, K., and Schendel D. (1988). Performance differences among strategic group members. Strategic Management Journal, 9(3), 207-223.
16. Cool, K. (1985). Strategic Group Formulation and Strategic Group Shift: A Longitudinal Analysis of the US Pharmaceutical Industry. 1963-1982, Unpublished doctoral dissertation, Purdue University, USA.
17. Cyert, R. M., Kumar, P., and Williams, J. R. (1993). Information, market imperfections and strategy. Strategic Management Journal, 14(2), 47-58.
18. D'Aveni, R. A., and Gunther, R. E. (1994). Hypercompetition: managing the dynamics of strategic maneuvering. New York: Free Press.
19. D'Aveni, R. A., Dagnino, G. B., and Smith, K. G. (2010). The Age of Temporary Advantage. Strategic Management Journal, 31(13), 1371-1385.
20. Denrell, J. (2004). Random Walks and Sustained Competitive advantage. Management Science, 50(7), 922-934.
21. Denrell, J. (2005). Selection bias and the perils of benchmarking. Harvard Business Review, 83(4), 114-119.
22. Denrell, J., Fang, C., and Zhao, Z. (2013). Inferring superior capabilities from sustained superior performance: A Bayesian analysis. Strategic Management Journal, 34(2), 185-196.
23. Duncan, R. B. (1976). The ambidextrous organization: Designing dual structures for innovation. Edited by R. H. Kilmann, L. R. Pondy, and D. P. Slevin. The Management of Organization: Strategy and Implementation, 1, 167-188. New York: North-Holland.
24. Fiegenbaum, A., McGee, J., and Thomas, H. (1987). Exploring the Linkage Between Strategic Groups and Competitive Strategy. International Studies of Management & Organization, 18(1), 6-25.
25. Firer, C. (1999). Driving financial performance through the du Pont identity: A strategic use of financial analysis and planning. Financial Practice and Education, 9(1), 34-45.
26. Fujii, H., and Managi, S. (2017). Trends and Priority Shifts in Artificial Intelligence Technology Invention: A global patent analysis (Research Institute of Economy, Trade and Industry, Discussion Paper No. 17-E-066). Retrieved from Research Institute of Economy, Trade and Industry website: https://www.rieti.go.jp/jp/publications/dp/17e066.pdf
27. Grant, R. M. (1991). The Resource-Based Theory of Competitive Advantage: Implications for Strategy Formulation. California Management Review, 33(3), 114-135.
28. Hannan, M. T., and Freeman, J. H. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149-164.
29. Hansen, M. L., Perry, L., and Reese, C. (2004). A Bayesian operationalization of the resource-based view. Strategic Management Journal, 25(13), 1279-1295.
30. Hunt, M. S. (1972). Competition in the major home appliance industry 1960-1970. Unpublished doctoral dissertation, Harvard University, USA.
31. Kauffman, S. A. (1995). Technology and evolution: Escaping the red queen effect. McKinsey Quarterly, 1, 118-129.
32. Kelly, D., and Amburgey, T. L. (1991). Organizational inertia and momentum: A dynamic model of strategic change. Academy of Management Journal, 34(4), 591-612.
33. Levinthal, D. A., and March, J. G. (1993). The Myopia of Learning. Strategic Management Journal, 14(S2), 95-112.
34. Levinthal, D. A. (1991). Random Walks and Organizational Mortality. Administrative Science Quarterly, 36(3), 397-420.
35. Lovelock J-D., Tan, S., Hare J., Woodward A., and Priestley A. (2018, March 12). Forecast: The Business Value of Artificial Intelligence, Worldwide, 2017-2025 (ID: G00348137). Retrieved from Gartner database.
36. Malkiel, B. G. (2011), "The Efficient-Market Hypothesis and the Financial Crisis", Princeton University.
37. March, James G. (1991). Exploration and Exploitation in Organizational Learning. Organization Science, 2(1), 71-87.
38. Mascarenhas, B., and Aaker, D. A. (1989). Mobility Barriers and Strategic Groups. Strategic Management Journal, 10(5), 475-485.
39. Merton, R. K. (1968). Social Theory and Social Structure. New York: Free Press.
40. O'Reilly III, C. A., and Tushman, M. L. (2008). Ambidexterity as a Dynamic Capability: Resolving the Innovator's Dilemma. Research in Organizational Behavior, 28, 185-206.
41. O'Reilly, C. A. and Tushman, M. L. (2013). Organizational ambidexterity: Past, present, and future. Academy of Management Perspectives, 27(4), 324-338.
42. Pacheco-de-Almeida, G. (2010). Erosion, time compression, and self-displacement of leaders in hypercompetitive environments. Strategic Management Journal, 31(13), 1498-1526.
43. Pamela, J. D., Patrick, G. M., Curtis, M. G., and Ken, G. S. (2008). The Red Queen Effect: Competitive Actions and Firm Performance. Academy of Management Journal, 51(1), 61-80.
44. Pearson, K. (1905). The Problem of the Random Walk. Nature, 72, 294.
45. Pisano, P. G. (2017). Toward a prescriptive theory of dynamic capabilities: connecting strategic choice, learning, and competition. Industrial and Corporate Change, 26(5), 747-762.
46. Porter, M. E. (1996). What Is Strategy? Harvard Business Review, 74(6), 61-78.
47. Porter, M. (1979). The structure within industries and companies' performance. Review of Economics and Statistics, 61(2), 214–227.
48. Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. New York: Free Press.
49. Porter, M. E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. New York: Free Press.
50. Powell, T. C. and Arregle, J. L. (2007). Firm performance and the axis of errors. Journal of Management Research, 7(2), 59-77.
51. Powell, T. C. (2001). Complete Advantage: Logical and Philosophical Considerations. Strategic Management Journal, 22(9), 875-888.
52. Powell, T. C. (2002). The Philosophy of Strategy. Strategic Management Journal, 23(9), 873-880.
53. Powell, T. C. (2003). Varieties of competitive parity. Strategic Management Journal, 24(1), 61-86.
54. Prahalad C. K., and Hamel G. (1990). The Core Competence of the Corporation. Harvard Business Review, 68(3), 79-92.
55. Priem, R., and Butler, J. (2001a). Is the resource-based "view" a useful perspective for strategic management research? Academy of Management Review, 26(1), pp. 22-40.
56. Priem, R., and Butler, J. (2001b). Tautology in the Resource-Based View and the Implications of Externally Determined Resource Value: Further Comments. Academy of Management Review, 26(1), 57-66.
57. Raisch, S., Birkinshaw, J., Probst, G., and Tushman, M. L. (2009). Organizational ambidexterity: Balancing exploitation and exploration for sustained performance. Organization Science, 20(4), 685-695.
58. Satya S. C., and Douglas N. H. (2016). Sustaining process improvement: the Red Queen effect. Production Planning & Control, 27(7-8), 621-636.
59. Siggelkow, N. (2002). Evolution toward fit. Administrative. Science Quarterly, 47(1), 125-159.
60. Simek, Z. (2009). Organizational Ambidexterity: Towards a Multilevel Understanding. Journal of Management Studies, 46(4), 597–624.
61. Sirmon, D. G., Hitt, M. A., Arregle, J. L., and Campbell, J. T. (2010). The Dynamic Interplay of Capability Strengths and Weaknesses: Investigating the Bases of Temporary Competitive Advantage. Strategic Management Journal, 31(13), 1386-1409.
62. Sonenshein S., Nault K., and Obodaru O. (2017). Competition of a Different Flavor: How a Strategic Group Identity Shapes Competition and Cooperation. Administrative Science Quarterly, 62(4), 626-656.
63. Talbott, W. (2008). Bayesian Epistemology. Stanford Encyclopedia of Philosophy.
64. Tang, Y. C., and Liou, F. M. (2010). Does firm performance reveal its own causes? The role of Bayesian inference. Strategic Management Journal, 31(1), 39-57.
65. Teece, D. J., Pisano, G., and Shuen, A. (1997). Dynamic Capabilities and Strategic Management. Strategic Management Journal, 18(7), 509-533.
66. Tenenbaum, J. M. (2006). AI Meets Web 2.0: Building the Web of Tomorrow, Today. AI Magazine, 27(4), 47-68.
67. Tushman, M. L., and O'Reilly, C. A. (1996). Ambidextrous organizations: Managing evolutionary and revolutionary change. California Management Review, 38(4), 8-30.
68. Van, V. L. (1973). A New Evolutionary Law. Evolutionary Theory, 1(1), 1-30.
69. Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244.
70. Yao, X., Zhou, J., Zhang, J., and Boër, C. R. (2017, September). From Intelligent Manufacturing to Smart Manufacturing for Industry 4.0 Driven by Next Generation Artificial Intelligence and Further On. Paper presented at the Proceedings 5th International Conference on Enterprise Systems, Beijing, China. Retrieved from https://www.researchgate.net/publication/321260252_From_Intelligent_Manufacturing_to_Smart_Manufacturing_for_Industry_40_Driven_by_Next_Generation_Artificial_Intelligence_and_Further_On

網路文獻
1. 科技發展觀測平台 (2018年)。2017-2025年人工智慧的商業價值預測。取自https://outlook.stpi.narl.org.tw/index/focusnews/detail/465
2. AMAX-Blog (2015). Deep Learning Smarts Up Your Smart Phone. Retrieved from https://www.amax.com/blog/?p=804
3. BCG (2017). Gaining Robotics Advantage. Retrieved from https://www.therobotreport.com/robotics-industry-growing-faster-than-expected/
4. CB Insights (2017). Beyond Chatbots: 40+ Commerce Startups Using AI To Style Shoppers, Adjust Pricing, Track Behavior, And More. Retrieved from https://www.cbinsights.com/research/ai-retail-smart-shop-startups/
5. Grand View Research (2016). eHealth Market Analysis By Product (EHR, ePrescribing, Clinical Decision Support, Telemedicine, Consumer Health Information, mHealth, Health Management, Information System), By Services (Monitoring, Diagnostic, Healthcare Strengthening), By End-Use (Providers, Insurers, Government, Healthcare Consumers) And Segment Forecasts To 2022. Retrieved from https://www.grandviewresearch.com/industry-analysis/e-health-market
6. GSMA (2017). The 5G era: Age of boundless connectivity and intelligent automation. Retrieved from https://www.gsmaintelligence.com/research/?file=0efdd9e7b6eb1c4ad9aa5d4c0c971e62&download
7. IAM Magazine (2018). Intellectual property and artificial intelligence: what does the future hold? Retrieved from https://www.iam-media.com/litigation/intellectual-property-and-artificial-intelligence-what-does-future-hold
8. MarketsandMarkets (2019). Unmanned Ground Vehicles (UGV) Market by Application (Military (ISR, EOD, Combat Support, Transportation), Commercial (Firefighting, CBRN, Physical Security, Oil & Gas)), Mobility, Size, System, Mode of Operation, and Region - Global Forecast to 2025. Retrieved from https://www.marketsandmarkets.com/Market-Reports/unmanned-ground-vehicles-market-72041795.html
9. NVIDIA (2016). What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? Retrieved from https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
10. Tractica (2015). Commercial Drone Shipments to Surpass 2.6 Million Units Annually by 2025. Retrieved from https://www.tractica.com/newsroom/press-releases/commercial-drone-shipments-to-surpass-2-6-million-units-annually-by-2025-according-to-tractica/
11. Tractica (2017). Deep Learning Chipset Shipments to Reach 41.2 Million Units Annually by 2025. Retrieved from https://www.tractica.com/newsroom/press-releases/deep-learning-chipset-shipments-to-reach-41-2-million-units-annually-by-2025/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔