(3.238.186.43) 您好!臺灣時間:2021/02/25 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張弘瑜
研究生(外文):Chang, Hong-Yu
論文名稱:透過頭戴式顯示器在虛擬環境中提供臉部正向力之研究
論文名稱(外文):FacePush: Introducing Normal Force on Face with Head-Mounted Displays
指導教授:詹力韋
指導教授(外文):Chan, Li-Wei
口試委員:許峻誠詹力韋陳冠文金榮泰
口試委員(外文):Hsu, Chun-ChengChan, Li-WeiChen, Kuan-WenChin, Jung-Tai
口試日期:2019-04-11
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:41
中文關鍵詞:虛擬實境正向力臉部觸覺頭戴式顯示器
外文關鍵詞:Virtual realityNormal forceFacial hapticsHead-mounted displays
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本文介紹了FacePush,一種與頭戴式顯示器(HMD)組合的系統,可在虛擬現實(VR)中為使用者的臉部產生正向力。FacePush的機制是透過兩個馬達提供的扭力來產生正向力,這兩個馬達利用力量轉移系統將力產生在使用者的臉上。FacePush可以產生不同強度的正向力,並將其應用於臉上。

為了讓FacePush在VR應用中獲得明顯和可辨別的正向力,我們進行了兩項研究,以確定絕對檢測閾值和使用者感知的識別閾值。在進一步考慮使用者舒適度之後,我們確定兩個水平的力,2.7 kPa和3.375 kPa,是透過實施三種應用來展示FacePush體驗的理想選擇,這三種應用證明了使用離散和連續正向力來實現虛擬現實中的拳擊,潛水和360導引。此外,關於拳擊的應用,我們進行了使用者研究,在享受度和現實感方面進行使用者體驗的評估並收集使用者的回饋。
This paper presents FacePush, a Head-Mounted Display (HMD) integrated with a pulley system to generate normal forces on a user's face in virtual reality (VR). The mechanism of FacePush is obtained by shifting torques provided by two motors that press upon a user's face via utilization of a pulley system. FacePush can generate normal forces of varying strengths and apply those to the surface of the face.

To inform our design of FacePush for noticeable and discernible normal forces in VR applications, we conducted two studies to identify the absolute detection threshold and the discrimination threshold for users' perception. After further consideration in regard to user comfort, we determined that two levels of force, 2.7 kPa and 3.375 kPa, are ideal for the development of the FacePush experience via implementation with three applications which demonstrate use of discrete and continuous normal force for the actions of boxing, diving, and 360 guidance in virtual reality. In addition, with regards to a virtual boxing application, we conducted a user study evaluating the user experience in terms of enjoyment and realism and collected the user's feedback.
Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 FacePush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Related Work 4
2.1 Haptic interaction in VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Haptic Output on HMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Normal Force as a Haptic Output . . . . . . . . . . . . . . . . . . . . . . 8
3 FacePush System 10
3.1 The Mechanical Design of FacePush . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 Torque Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Two States of FacePush . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Two Types of Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Mapping Rotated Angle into Pressure on Face . . . . . . . . . . . . . . . . 14
4 Example Applications 16
4.1 Boxing: Discrete Force on Face . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Diving: Continuous and Discrete Normal Force . . . . . . . . . . . . . . . 17
4.3 Attention Guidance: Continuous Normal Force . . . . . . . . . . . . . . . 19
5 User Studies 21
5.1 User Study 1: Psychophysics of FacePush . . . . . . . . . . . . . . . . . . 21
5.1.1 Absolute Detection Threshold (ADT) . . . . . . . . . . . . . . . . 21
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Discrimination Threshold (JND) . . . . . . . . . . . . . . . . . . . 22
5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.5 Comfort of FacePush . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 User Study 2: User Experience . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Discussion 30
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Thermo with Push 32
7.1 Hardware Combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Updated Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 Conclusions 35
References 36

List of Tables

5.1 Table shows the percentage of responses that judged the two stimuli as different. As baseload increases, offset needs to be higher.........23

List of Figures
1.1 (a) FacePush presents a pulley system incorporated with HMD providingpressure on face. (b) Our system pulls the belts of the HMD to generatediscrete/continuous and weak/strong pressure stimuli to enhance . . . . .1
1.2 (a) Boxing (b) Diving and (c) Attention guidance experiences in virtualenvironments. In (a)(b)(c), the face icons indicate the displayed force onface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2.1 (a) Haptic Revolver (b) Grabity . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 (a) Impacto (b) Levels-Up . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.3 (a) ThermoVR (b) HapticHead . . . . . . . . . . . . . . . . . . . . . . . .6
2.4 (a) HangerOVER (b) GyroVR . . . . . . . . . . . . . . . . . . . . . . . . .7
2.5 (a) Squeezeback (b) ProximityHat . . . . . . . . . . . . . . . . . . . . . . .8
2.6 (a) HapticClench (b) Force Jacket . . . . . . . . . . . . . . . . . . . . . . .9
3.1 A front view of the FacePush system. . . . . . . . . . . . . . . . . . . . . .10
3.2 Each motor connecting a belt via a torque generator allows (a) translate abelt-pull into (b) a HMD-push, resulting in a normal force on face. . . . .12
3.3 (a)(b)(c) Assembly of FacePush on the HMD. The belt and the Velcrofasteners are touched for clarity. . . . . . . . . . . . . . . . . . . . . . . . .12
3.4 (a)Neutral State: There is no normal force generated, when the rotateangle is 0. (b)Push State: Generates a variety of magnitude of normalforce with different angle . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5 (a)Discrete stimulus: An impulse representing a short duration of contact.(b)Continuous stimuli: The duration covers the whole application, but theintensity is different among users. . . . . . . . . . . . . . . . . . . . . . . .143.6 Angle to pressure mapping. . . . . . . . . . . . . . . . . . . . . . . . . . .15
4.1 Boxing experience: a punch hit at the left and middle areas of the userface triggers the left and both motors respectively. (The mark on the clothwas masked for blind review.) . . . . . . . . . . . . . . . . . . . . . . . . .17
4.2 Diving experience: the user advances underwater with arm strokes of bothhands, and turn left with right-arm strokes. (The mark on the cloth wasmasked for blind review.) . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.3 Two underwater haptic experiences: (a)Fish Flock (b)Shark (The mark onthe cloth was masked for blind review.) . . . . . . . . . . . . . . . . . . . .19
4.4 Attention Guidance: left or right-sided normal force on face guides usersto search toward left or right respectively. . . . . . . . . . . . . . . . . . .19
5.1 (a) Comfort of each pressure (b) Judging the percentage of pressure on theface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
5.2 The subjective ratings for Enjoyment and Realism with regards to a virtualboxing application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
7.1 (a) Seen from inside (b) A front view of the FacePush with Thermo . . . .32
7.2 (a) A front view of the piltier module (b) A back view of the piltier module(c) Combined with 3D printed rig . . . . . . . . . . . . . . . . . . . . . . .33
7.3 (a) Boxing with heat (b) Diving with cold . . . . . . . . . . . . . . . . . .34
[1] Pedro Lopes, Alexandra Ion, and Patrick Baudisch. “Impacto: Simulating Physical
Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation”. In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. UIST ’15. Charlotte, NC, USA: ACM, 2015, pp. 11–19. isbn: 978-1-
4503-3779-3. doi: 10.1145/2807442.2807443. url: http://doi.acm.org/10.
1145/2807442.2807443.
[2] Hrvoje Benko et al. “NormalTouch and TextureTouch: High-fidelity 3D Haptic
Shape Rendering on Handheld Virtual Reality Controllers”. In: Proceedings of the
29th Annual Symposium on User Interface Software and Technology. UIST ’16.
Tokyo, Japan: ACM, 2016, pp. 717–728. isbn: 978-1-4503-4189-9. doi: 10.1145/
2984511.2984526. url: http://doi.acm.org/10.1145/2984511.2984526.
[3] Evan Strasnick et al. “Haptic Links: Bimanual Haptics for Virtual Reality Using
Variable Stiffness Actuation”. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. CHI ’18. Montreal QC, Canada: ACM, 2018, 644:1–
644:12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3174218. url: http:
//doi.acm.org/10.1145/3173574.3174218.
[4] Roshan Lalintha Peiris et al. “ThermoVR: Exploring Integrated Thermal Haptic
Feedback with Head Mounted Displays”. In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. CHI ’17. Denver, Colorado, USA: ACM,
2017, pp. 5452–5456. isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.3025824.
url: http://doi.acm.org/10.1145/3025453.3025824.
[5] Nimesha Ranasinghe et al. “Ambiotherm: Enhancing Sense of Presence in Virtual
Reality by Simulating Real-World Environmental Conditions”. In: Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. CHI ’17. Denver,
Colorado, USA: ACM, 2017, pp. 1731–1742. isbn: 978-1-4503-4655-9. doi: 10.1145/
3025453.3025723. url: http://doi.acm.org/10.1145/3025453.3025723.
[6] Oliver Beren Kaul and Michael Rohs. “HapticHead: A Spherical Vibrotactile Grid
Around the Head for 3D Guidance in Virtual and Augmented Reality”. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. CHI
’17. Denver, Colorado, USA: ACM, 2017, pp. 3729–3740. isbn: 978-1-4503-4655-9.
doi: 10.1145/3025453.3025684. url: http://doi.acm.org/10.1145/3025453.
3025684.
[7] Jan Gugenheimer et al. “GyroVR: Simulating Inertia in Virtual Reality Using Head
Worn Flywheels”. In: Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. UIST ’16. Tokyo, Japan: ACM, 2016, pp. 227–232. isbn:
978-1-4503-4189-9. doi: 10.1145/2984511.2984535. url: http://doi.acm.org/
10.1145/2984511.2984535.
[8] Yuki Kon, Takuto Nakamura, and Hiroyuki Kajimoto. “HangerOVER: HMD-embedded
Haptics Display with Hanger Reflex”. In: ACM SIGGRAPH 2017 Emerging Technologies. SIGGRAPH ’17. Los Angeles, California: ACM, 2017, 11:1–11:2. isbn:
978-1-4503-5012-9. doi: 10.1145/3084822.3084842. url: http://doi.acm.org/
10.1145/3084822.3084842.
[9] Eric Whitmire et al. “Haptic Revolver: Touch, Shear, Texture, and Shape Rendering on a Reconfigurable Virtual Reality Controller”. In: Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. CHI ’18. Montreal QC,
Canada: ACM, 2018, 86:1–86:12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.
3173660. url: http://doi.acm.org/10.1145/3173574.3173660.
[10] Inrak Choi et al. “Grabity: A Wearable Haptic Interface for Simulating Weight and
Grasping in Virtual Reality”. In: Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology. UIST ’17. Québec City, QC,Canada: ACM, 2017, pp. 119–130. isbn: 978-1-4503-4981-9. doi: 10.1145/3126594.
3126599. url: http://doi.acm.org/10.1145/3126594.3126599.
[11] Pedro Lopes et al. “Providing Haptics to Walls & Heavy Objects in Virtual
Reality by Means of Electrical Muscle Stimulation”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. Denver, Colorado,
USA: ACM, 2017, pp. 1471–1482. isbn: 978-1-4503-4655-9. doi: 10.1145/3025453.
3025600. url: http://doi.acm.org/10.1145/3025453.3025600.
[12] Dominik Schmidt et al. “Level-Ups: Motorized Stilts That Simulate Stair Steps in
Virtual Reality”. In: Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM, 2015,
pp. 2157–2160. isbn: 978-1-4503-3145-6. doi: 10.1145/2702123.2702253. url:
http://doi.acm.org/10.1145/2702123.2702253.
[13] Jan Gugenheimer et al. “SwiVRChair: A Motorized Swivel Chair to Nudge Users’
Orientation for 360 Degree Storytelling in Virtual Reality”. In: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. CHI ’16. San Jose,
California, USA: ACM, 2016, pp. 1996–2000. isbn: 978-1-4503-3362-7. doi: 10.
1145/2858036.2858040. url: http://doi.acm.org/10.1145/2858036.2858040.
[14] Masahiro Koge et al. “Haptic Bed: Bed-style Haptic Display for Providing Weight
Sensation”. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology. ACE ’14. Funchal, Portugal: ACM, 2014, 47:1–47:4. isbn:
978-1-4503-2945-3. doi: 10.1145/2663806.2663861. url: http://doi.acm.org/
10.1145/2663806.2663861.
[15] Yu-Jun Hong et al. “Wakeboarding: An Exertion Game in Virtual Reality”. In:
ACM SIGGRAPH 2017 VR Village. SIGGRAPH ’17. Los Angeles, California: ACM,
2017, 15:1–15:2. isbn: 978-1-4503-5013-6. doi: 10.1145/3089269.3089271. url:
http://doi.acm.org/10.1145/3089269.3089271.
[16] Dhruv Jain et al. “Immersive Scuba Diving Simulator Using Virtual Reality”. In:
Proceedings of the 29th Annual Symposium on User Interface Software and Technology. UIST ’16. Tokyo, Japan: ACM, 2016, pp. 729–739. isbn: 978-1-4503-4189-9.
doi: 10.1145/2984511.2984519. url: http://doi.acm.org/10.1145/2984511.
2984519.
[17] Lung-Pan Cheng et al. “Haptic Turk: A Motion Platform Based on People”. In:
Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing
Systems. CHI ’14. Toronto, Ontario, Canada: ACM, 2014, pp. 3463–3472. isbn:
978-1-4503-2473-1. doi: 10.1145/2556288.2557101. url: http://doi.acm.org/
10.1145/2556288.2557101.
[18] Lung-Pan Cheng et al. “TurkDeck: Physical Virtual Reality Based on People”. In:
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. UIST ’15. Charlotte, NC, USA: ACM, 2015, pp. 417–426. isbn: 978-1-
4503-3779-3. doi: 10.1145/2807442.2807463. url: http://doi.acm.org/10.
1145/2807442.2807463.
[19] V. A. de Jesus Oliveira et al. “Experiencing guidance in 3D spaces with a vibrotactile
head-mounted display”. In: 2017 IEEE Virtual Reality (VR). 2017, pp. 453–454. doi:
10.1109/VR.2017.7892375.
[20] Da-Yuan Huang et al. “Vibroplay: Authoring Three-dimensional Spatial-temporal
Tactile Effects with Direct Manipulation”. In: SIGGRAPH ASIA 2016 Emerging
Technologies. SA ’16. Macau: ACM, 2016, 3:1–3:2. isbn: 978-1-4503-4539-2. doi:
10.1145/2988240.2988250. url: http://doi.acm.org/10.1145/2988240.
2988250.
[21] Michi Sato et al. “Development of a Head Rotation Interface by Using Hanger
Reflex”. In: IEEE RO-MAN. 2009, pp. 534–538.
[22] Yuki Kon et al. “Hanger Reflex of the Head and Waist with Translational and
Rotational Force Perception”. In: Haptic Interaction. Ed. by Shoichi Hasegawa et
al. Singapore: Springer Singapore, 2018, pp. 217–223.
[23] Kazuma Aoyama et al. “Four-pole galvanic vestibular stimulation causes body sway
about three axes”. In: 5 (May 2015), p. 10168.
[24] Kazuma Aoyama et al. “GVS RIDE: Providing a Novel Experience Using a Head
Mounted Display and Four-pole Galvanic Vestibular Stimulation”. In: ACM SIGGRAPH 2017 Emerging Technologies. SIGGRAPH ’17. Los Angeles, California:
ACM, 2017, 9:1–9:2. isbn: 978-1-4503-5012-9. doi: 10.1145/3084822.3084840.
url: http://doi.acm.org/10.1145/3084822.3084840.
[25] Henning Pohl et al. “Squeezeback: Pneumatic Compression for Notifications”. In:
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
CHI ’17. Denver, Colorado, USA: ACM, 2017, pp. 5318–5330. isbn: 978-1-4503-
4655-9. doi: 10.1145/3025453.3025526. url: http://doi.acm.org/10.1145/
3025453.3025526.
[26] Aakar Gupta, Antony Albert Raj Irudayaraj, and Ravin Balakrishnan. “HapticClench: Investigating Squeeze Sensations Using Memory Alloys”. In: Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
UIST ’17. Québec City, QC, Canada: ACM, 2017, pp. 109–117. isbn: 978-
1-4503-4981-9. doi: 10.1145/3126594.3126598. url: http://doi.acm.org/10.
1145/3126594.3126598.
[27] Alexandra Delazio et al. “Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences”. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. CHI ’18. Montreal QC, Canada: ACM, 2018, 320:1–
320:12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3173894. url: http:
//doi.acm.org/10.1145/3173574.3173894.
[28] Matthias Berning et al. “ProximityHat: A Head-worn System for Subtle Sensory
Augmentation with Tactile Stimulation”. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers. ISWC ’15. Osaka, Japan: ACM, 2015,
pp. 31–38. isbn: 978-1-4503-3578-2. doi: 10.1145/2802083.2802088. url: http:
//doi.acm.org/10.1145/2802083.2802088.
[29] L. A. Jones and H. Z. Tan. “Application of Psychophysical Techniques to Haptic
Research”. In: IEEE Transactions on Haptics 6.3 (2013), pp. 268–284. issn: 1939-
1412. doi: 10.1109/TOH.2012.74.
[30] Marjorie R. Leek. “Adaptive procedures in psychophysical research”. In: Perception & Psychophysics 63.8 (2001), pp. 1279–1292. issn: 1532-5962. doi: 10.3758/
BF03194543. url: https://doi.org/10.3758/BF03194543.
[31] Robert Konrad, Emily A. Cooper, and Gordon Wetzstein. “Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with
Focus-tunable and Monovision Near-eye Displays”. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. CHI ’16. San Jose, California, USA: ACM, 2016, pp. 1211–1220. isbn: 978-1-4503-3362-7. doi: 10.1145/
2858036.2858140. url: http://doi.acm.org/10.1145/2858036.2858140.
[32] Nitish Padmanaban et al. “Optimizing virtual reality for all users through gazecontingent and adaptive focus displays”. In: Proceedings of the National Academy
of Sciences 114.9 (2017), pp. 2183–2188. issn: 0027-8424. doi: 10.1073/pnas.
1617251114. eprint: http://www.pnas.org/content/114/9/2183.full.pdf.
url: http://www.pnas.org/content/114/9/2183.
[33] Kaan Akşit et al. “Varifocal Virtuality: A Novel Optical Layout for Near-eye Display”. In: ACM SIGGRAPH 2017 Emerging Technologies. SIGGRAPH ’17. Los
Angeles, California: ACM, 2017, 25:1–25:2. isbn: 978-1-4503-5012-9. doi: 10.1145/
3084822.3084829. url: http://doi.acm.org/10.1145/3084822.3084829.
[34] Kouta Minamizawa et al. “Gravity Grabber: Wearable Haptic Display to Present
Virtual Mass Sensation”. In: ACM SIGGRAPH 2007 Emerging Technologies. SIGGRAPH ’07. San Diego, California: ACM, 2007. isbn: 978-1-4503-1824-2. doi: 10.
1145/1278280.1278289. url: http://doi.acm.org/10.1145/1278280.1278289.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔