|
[1] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE TRANSACTIONS ON COMMUNICATIONS, 31:532–540, 1983. [2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose estimation using part affinity fields. In CVPR, 2017. [3] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros. Everybody dance now. arXiv preprint arXiv:1808.07371, 2018. [4] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. CoRR, abs/1605.08803, 2016. [5] K. Gong, X. Liang, D. Zhang, X. Shen, and L. Lin. Look into person: Self-supervised structure-sensitive learning and a new benchmark for human parsing. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. [6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, pages 2672–2680. 2014. [7] R. A. Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose estimation in the wild. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [8] X. Han, Z. Wu, Z. Wu, R. Yu, and L. S. Davis. Viton: An image-based virtual try-on network. In CVPR, 2018. 34 [9] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980–2988, 2017. [10] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6626–6637. Curran Associates, Inc., 2017. [11] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007. [12] N. Jetchev and U. Bergmann. The conditional analogy GAN: swapping fashion articles on people images. In IEEE International Conference on Computer Vision Workshops,(ICCV) Workshops, pages 2287–2292, 2017. [13] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision (ECCV), 2016. [14] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality, stability, and variation. In International Conference on Machine Learning (ICLR), 2018. [15] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pages 10236–10245, 2018. [16] D. P. Kingma and M. Welling. Auto-encoding variati retrieval and attribute prediction. ACM International Conference on Multimedia Retrieval, ICMR, 2016. [18] X. Liang, K. Gong, X. Shen, and L. Lin. Look into person: Joint body parsing & pose estimation network and a new benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. [19] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial networks. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2813–2821, 2017. [20] Y. Men, Z. Lian, Y. Tang, and J. Xiao. A common framework for interactive texture transfer. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [21] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv, preprint arXiv:1411.1784, 2014. [22] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep learning of images, labels and captions. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2352–2360, 2016. [23] A. Raj, P. Sangkloy, H. Chang, J. Lu, D. Ceylan, and J. Hays. Swapnet: Garment transfer in single view images. In The European Conference on Computer Vision (ECCV), September 2018. [24] V. Ramakrishna, D. Munoz, M. Hebert, A. J. Bagnell, and Y. Sheikh. Pose machines: Articulated pose estimation via inference machines. In ECCV, 2014. [25] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted, volume 9351, pages 234–241. Springer, 2015. [26] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and 36 R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 2234– 2242. Curran Associates, Inc., 2016. [27] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using multiview bootstrapping. In CVPR, 2017. [28] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. [29] B. Wang, H. Zheng, X. Liang, Y. Chen, and L. Lin. Toward characteristic-preserving image-based virtual try-on network. In Proceedings of the European Conference on Computer Vision (ECCV), pages 589–604, 2018. [30] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. [31] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In CVPR, 2016. [32] W. Xian, P. Sangkloy, V. Agrawal, A. Raj, J. Lu, C. Fang, F. Yu, and J. Hays. Texturegan: Controlling deep image synthesis with texture patches. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [33] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In IEEE International Conference on Computer Vision (ICCV), 2017. [34] S. Zhu, S. Fidler, R. Urtasun, D. Lin, and C. L. Chen. Be your own prada: Fashion synthesis with structural coherence. In Proceedings of the IEEE Conference on International Conference on Computer Vision, 2017.
|