|
[1] Gernot Vormayr, Tanja Zseby, Joachim Fabini: Botnet Communication Patterns. IEEE Communications Surveys and Tutorials 19(4): 2768-2796 (2017) [2] Sérgio S. C. Silva, Rodrigo M. P. Silva, Raquel Coelho Gomes Pinto, Ronaldo M. Salles: Botnets: A survey. Computer Networks 57(2): 378-403 (2013) [3] Arash Habibi Lashkari, Gerard Draper-Gil, Jonathan Edward Keenan, Kenneth Fon Mbah, Ali A. Ghorbani: A Survey Leading to a New Evaluation Framework for Network-based Botnet Detection. International Conference on Communication and Network Security: 59-66 (2017) [4] Weikeng Chen, Xiao Luo, A. Nur Zincir-Heywood: Exploring a service-based normal behaviour profiling system for botnet detection. IEEE IM: 947-952 (2017) [5] Piotr Bazydlo, Krzysztof Lasota, Adam Kozakiewicz: Botnet Fingerprinting: Anomaly Detection in SMTP Conversations. IEEE Security & Privacy 15(6): 25-32 (2017) [6] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, Hui Zhang: An empirical evaluation of entropy-based traffic anomaly detection. Internet Measurement Conference: 151-156 (2008) [7] Jan Goebel, Thorsten Holz: Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation. HotBots:8-8 (2007) [8] Guofei Gu, Phillip A. Porras, Vinod Yegneswaran, Martin W. Fong, Wenke Lee: BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Correlation. USENIX Security Symposium:1-16 (2007) [9] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee: BotMiner: Clustering Analysis of Network Traffic for Protocol- and Structure-Independent Botnet Detection. USENIX Security Symposium: 139-154 (2008) [10] Sherif Saad, Issa Traoré, Ali A. Ghorbani, Bassam Sayed, David Zhao, Wei Lu, John Felix, Payman Hakimian: Detecting P2P botnets through network behavior analysis and machine learning. Privacy, Security, and Trust: 174-180 (2011) [11] G. Kirubavathi Venkatesh, R. Anitha: Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering 50: 91-101 (2016) [12] Carl Livadas, Robert Walsh, David E. Lapsley, W. Timothy Strayer: Using Machine Learning Techniques to Identify Botnet Traffic. Local Computer Network: 967-974 (2006) [13] N.S.Raghava, Divya Sahgal, and Seema Chandna: Classification of Botnet Detection Based on Botnet Architechture. Communication Systems and Network Technologies: 569-572 (2012) [14] Sunny Behal, Amanpreet S. Brar, Krishan Kumar: Signature-based Botnet Detection and Prevention. International Symposium on Computer Engineering and Technology: 127-132 (2010) [15] Elaheh Biglar Beigi Samani, Hossein Hadian Jazi, Natalia Stakhanova, Ali A. Ghorbani: Towards effective feature selection in machine learning-based botnet detection approaches. Communication and Network Security: 247-255 (2014) [16] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim: Efficient Algorithms for Mining Outliers from Large Data Sets. Special Interest Group on Management of Data: 427-438 (2000) [17] Pedro A. Torres-Carrasquillo, Douglas A. Reynolds, John R. Deller Jr.: Language identification using Gaussian mixture model tokenization. International Conference on Acoustics, Speech and Signal Processing: 757-760 (2002) [18] Yuan-Hsiang Su, Amir Rezapour, Wen-Guey Tzeng: The forward-backward string: A new robust feature for botnet detection. Dependable and Secure Computing: 485-492 (2017) [19] Honeynet project, Know your Enemy: tracking Botnets, 2008, https://www.honeynet.org/papers/bots [20] Information security and object technology (ISOT) research lab, https://www.uvic.ca/engineering/ece/isot/index.php [21] Long Mai, and Minho Park: A Comparison of Clustering Algorithms for Botnet Detection Based on Network Flow. Ubiquitous and Future: 667-669 (2016) [22] S. García, Martin Grill, Jan Stiborek, Alejandro Zunino: An empirical comparison of botnet detection methods. Computers & Security 45: 100-123 (2014) [23] Di Zhuang, J. Morris Chang: PeerHunter: Detecting peer-to-peer botnets through community behavior analysis. Dependable and Secure Computing: 493-500 (2017) [24] Omar Y. Al-Jarrah, Omar Alhussein, Paul D. Yoo, Sami Muhaidat, Kamal Taha, Kwangjo Kim: Data Randomization and Cluster-Based Partitioning for Botnet Intrusion Detection. IEEE Trans. Cybernetics 46(8): 1796-1806 (2016)
|