(3.238.174.50) 您好!臺灣時間:2021/04/18 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳炫燁
研究生(外文):Chen, Syuan-Ye
論文名稱:具備負電容與光電耦合特性之鐵電非揮發性記憶體
論文名稱(外文):Non-volatile Memory Based on Negative Capacitance and Photovoltaic Effect
指導教授:曾院介
指導教授(外文):Tseng, Yuan-Chieh
口試委員:曾院介段興宇張書睿
口試委員(外文):Tseng, Yuan-ChiehTuan, Hsing-YuChang, Shu-Jui
口試日期:2018-08-06
學位類別:碩士
校院名稱:國立交通大學
系所名稱:國際半導體產業學院
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:負電容效應非揮發性記憶體光電耦合特性X光吸收光譜
外文關鍵詞:negative capacitancenon-volatile memoryphotovoltaic Effectx-ray absorption spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將鐵電GdFe0.8Ni0.2O3(GFNO) 與SrTiO3(STO)異質結構,經過微影製程製作成平行電容元件,此異質結構之總電容值大於單層STO介電結構的電容值,推測具有負電容特性。光電量測中,加入GFNO鐵電層後大幅提升光電流值,在施加正脈衝波電壓後,鐵電層內部殘餘極化方向朝下並增強光電流;反之,施加負脈衝波電壓後,鐵電層內部殘餘極化方向朝上時,光電流減小。
接著利用臨場X光吸收光譜(x-ray absorption spectrum,XAS) 探討引起光電流變化之成因,發現當GFNO極化方向朝上時,偶極矩迫使載子累積在GFNO上層;當GFNO極化方向朝下時,則迫使載子累積在GFNO下層。利用材料表面分析技術X射線光電子能譜(x-ray photoelectron spectroscopy,XPS),發現當GFNO極化方向朝上時,氧空缺分布在上電極與薄膜介面處,反之則亦然。由多功能掃描探針顯微鏡(Kelvin probe force microscope,KPFM)觀察出極化方向朝上時,表面功函數會上升使介面處蕭特基能障(Schottky barrier)下降,反之亦然。以上結果可驗證不同極化方向所導致的光電流變化趨勢,本研究結合光譜以及光電流量測技術,觀測極化方向不同狀態下之光調式非揮發性記憶體之應用。
GdFe0.8Ni0.2O3/SrTiO3 (GFNO/STO) ferroelectric capacitors have been successfully fabricated on Nb-doped SrTiO3 substrate, in which the GFNO and STO film were prepared by magnetron sputtering. Bilayer metal−insulator−metal (MIM) parallel plate capacitor was fabricated by Lithography Process. When GFNO layer was combined with STO layer, the total capacitance appeared increased, which suggested the negative value of the ferroelectric capacitance. In addition, positive poling led to polarization pointing down, and in turn amplified the photocurrent. In contrast, negative poling led to polarization pointing up, and in turn diminished the photocurrent. The direction of photocurrent could be reproducibly switched along with the polarization flips.
Mechanism for the tuning and enhanced photovoltaic properties were analyzed. In-situ x-ray absorption spectroscopy (XAS) showed that electrons were pushed upward or doward by dipole moment inside GFNO thin film with the occurrence of polarization flipping. X-ray photoelectron spectroscopy (XPS) indicated that oxygen vacancies accumulated mainly at one side of GFNO with different pulse sign and led to the change of Schotty barrier height at the interface.
With the combination of X-ray analysis and phototcurrent measurement, our results pave a way for research and development for lead-free thin film ferroelectric electro-optic memory.
摘 要………...…….…………………………..………………………………………………i
Abstract…………………………………………………………………………...……………ii致 謝…...…………………………………………..……………………………….……..iii
總目錄……….………….………………………..………………………………………….vi
表目錄…….…………………………………….…………………………………………viii
圖目錄…………………………………….………………………………………………viii
第1章 緒論……………………………………………………………………..…………….1
第2章 文獻回顧………………………………………………….…………………………..3
2-1鐵電材料之自發極化簡介…………………………………………………….3
2-2 負電容效應及其量測…………………………………………………………….5
2-2-1負電容簡介……………………………………………………………......5
2-2-2 負電容效應之量測…………………………….……………………….....6
2-3 鈣鈦礦氧化物於光檢測上的應用……………………………………………….9
2-3-1 簡介……………………………………………………………..…………9
2-3-2鈣鈦礦氧化物SrTiO3於光檢測上之應用………..……..…...…………9
2-3-3 鐵電性鈣鈦礦氧化物於光檢測上之應用…………..……..……………10
2-4 鐵電性鈣鈦礦氧化物於非揮發性記憶體上的應用……………………….12
2-4-1可調式光伏效應之非揮發性記憶體…………………………..………..12
2-4-2影響可調式光伏效應之因素………………………..……..……………12
2-5 研究動機……………………………………………………………………….15
第3章 實驗流程與分析儀器介紹…………………………………………………….……16
3-1 實驗流程………………….……………………………………………………..16
3-1-1 實驗流程圖……………………..………………………………………..16
3-1-2 實驗流程簡述……………….……..…….………………………………17
3-2 試片製備流程…….……………………………………………………………..18
3-2-1 GFNO以及STO薄膜製備………………………………………...…….18
3-2-2 Pt/GFNO/STO/Nb:STO元件製程………………………………….…….18
3-3 量測及分析儀器介紹……………………………………….…………………..19
3-3-1 微觀結構分析……………………………........…………………………19
3-3-2鐵電性質分析……………………...……………..…………...……….20
3-3-3功函數之分析…………………………………………………..….......20
3-3-4 X射線光電子能譜學(XPS).....……………………………...……….......21
3-3-5 X射線繞射分析(XRD)……..……………........…………………………22
3-3-6 X光吸收光譜量測 (XAS)………………........…………………………22
3-3-7光電量測系統……………………………........…………………………23
第4章 結果與討論.................................................................................................................24
4-1 GdFe0.8Ni0.2O3薄膜性質基本分析........................................................................24
4-1-1 薄膜表面形貌分析………........................................................................24
4-1-2 薄膜基本鐵電性質分析………................................................................24
4-2 負電容電性分析...................................................................................................26
4-2-1雙層結構之電容密度………………………………………….…………26
4-2-2臨場X射線繞射(X-ray diffraction)分析………………..……………....27
4-3脈衝波電壓極化及光檢測性質分析..……….………………………….......29
4-3-1脈衝波電壓影響極化之簡介………………………………….…………29
4-3-2 GFNO/STO雙層結構之光學性質分析……………...………….…....30
4-3-3 GFNO/STO雙層結構之光檢測性質分析…………..………….….....31
4-3-4偶極矩方向受正負脈衝波電壓影響之分析……………………….…....37
4-3-5氧空缺受正負脈衝波電壓影響及其對光電量測變化之分析…….…....42
4-3-6介面受正負脈衝波電壓影響及其對光電量測變化之分析……….…....47
4-4 GFNO/STO/Nb:STO元件受極化方向影響之光檢測機制…………….......52
4-5提升負電容效應以及不同極化方向之光電量測穩定性…………….......57
第5章 結論…………………….……………………………………………………………61
參考文獻……………………………………………………………………………………...62
[1] M. E. Lines, and A. M. Glass, Clarendon Press, Oxford, ISBN 0-19-851286-4 (1979).
[2] S. Salahuddin, and S. Datta, Nano Lett., 8, 405-410 (2008).
[3] S. Salahuddin, and S. Datta, IEDM Tech. Digest, 1-4 (2008).
[4] D. J. R. Appleby, N. K. Ponon, K. S. K. Kwa, B. Zou, P. K. Petrov, T. Wang, N. M. Alford, and A. O’Neill, Nano Lett., 14, 3864 (2014).
[5] A. Chanthbouala, A. Crassous, V. Gracia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthe´le´my, Nature Nanotech., 7, 101 (2012).
[6] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, Science, 324, 63 (2009).
[7] R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun., 4, 1990 (2013).
[8] G. L. Yuan, and J. L. Wang, Appl. Phys. Lett., 95, 252904 (2009).
[9] H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. W. Cheong, Adv. Mater., 23, 3403 (2011).
[10] P. Lunkenheimer, J. Müller, S. Krohns, F. Schrettle, A. Loidl, B. Hartmann, R. Rommel, M. Souza, C. Hotta, J. A. Schlueter, and M. Lang, Nat. Mater., 11, 755 (2012).
[11] D. Kingery, H. K. Bowen, and D. R. Uhlmann, Dielectric Properties in Introduction to Ceramics, 2nd ED., 913 (1976).
[12] G. H. Kwei, A. C. Lawson, and S. J. L. Billinge, J. Phys. Chem., 97, 2368 (1993).
[13] C. H. Ahn, K. M. Rabe, and J. M. Triscone, Science, 303, 488 (2004).
[14]The International Technology Roadmap for Semiconductors. Available online: http://www.itrs2.net/ (2015).
[15] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, Nat. Mater., 14, 182 (2015).
[16] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh, and S. Salahuddin, Appl. Phys. Lett., 99, 113501 (2011).
[17] W. Gao, A. Khan, X. Marti, C. Nelson, C. Serrao, J. Ravichandran, R. Ramesh, and S. Salahuddin, Nano Lett., 14, 5814 (2014).
[18] B. Nie, L. B. Luo, J. J. Chen, J. G. Hu, C. Y. Wu, L. Wang, and J. S. Jie, Nanotechnology, 24, 095603 (2013).
[19] E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Tech., 18, 33 (2003).
[20] J. Xing, C. Zhao, E. Guo, and F. Yangi, IEEE Sens. J., 12, 2561 (2012).
[21] E. J. Guo, H. B. Lu, M. He, J. Xing, K. J. Jin, and G. Z. Yang, Appl. Opt., 49, 2557(2010).
[22] T. Sakudo, and H. Unoki, Phys. Rev. Lett., 26, 851 (1971).
[23] K. X. Jin, Y. F. Li, Z. L. Wang, H. Y. Peng, W. N. Lin, A. K. K. Kyaw, Y. L. Jin, K. J. Jin, X. W. Sun, C. Soci, and T. Wu, AIP Adv., 2, 042131 (2012).
[24] Y. Yuan, Z. Xiao, B. Yang, and J. Huang, J. Mater. Chem. A, 2, 6027 (2014).
[25] W. Ji, K. Yao, and Y. C. Liang, Adv. Mater., 22, 1763 (2010).
[26] X. Li, X. Wang, L. Peng, K. Zhang, W Wu, and Y. Tang, Ferroelectrics, 500, 250 (2016).
[27] R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zhou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun., 4, 1990 (2013).
[28] D. J. Kim, J. Y. Jo, Y. S. Kim, Y. J. Chang, J. S.Lee, J. G. Yoon, T. K. Song, and T. W. Noh, Phys. Rev. Lett., 95, 237602 (2005).
[29] M. Qin, K. Yao, Y. C. Liang, and S. Shannigrahi, J. Appl. Phys., 101, 014104 (2007).
[30] R. Moubah, O. Rousseau, D. Colson, A. Artemenko, M. Maglione, and M. Viret, Adv. Funct. Mater., 22, 4814(2012).
[31] R. L. Gao, H. W. Yang, Y. S. Chen, J. R. Sun, Y. G. Zhao, and B. G. Shen, Appl. Phys. Lett., 104, 031906 (2014).
[32] E. H. Rhoderick, and R. H. Williams, Clarendon Press. Oxford (1998).
[33] Y. Guo, B. Guo, W. Dong, H. Li, and H. Liu, Nanotechnology, 24, 275201 (2013).
[34] T. C. Yeh, Q. Zhu, D. B. Buchholz, A. B. Martinson, R. P. H. Chang, and T. O. Mason, Appl. Surf. Sci., 330, 405 (2015).
[35] J. Zhang, Z. Pan, F. F. Guo, W. C. Liu, H. Ning, Y. B. Chen, M. H. Lu, B. Yang, J. Chen, S. T. Zhang, X. Xing, J. Rȍdel, W. Cao, and Y. F. Chen, Nat. Commun., 10, 1038 (2015).
[36] B. Hammer, and J. K. Nørskov, Adv. Catal., 45, 71 (2000).
[37] R. J. Mossanek, G. Domínguez-Cañizares, A. Gutiérrez, M. Abbate, D. Díaz-Fernández and L. Soriano, J. Phys. Condens. Matter, 25, 495506 (2013).
[38] P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzky, and H. Verweij, Phys. Rev. Lett., 62, 221 (1989).
[39] D. Telesca, B. Sinkovic, S. H. Yang, and S. S. P. Parkin, J. Electron Spectrosc. Relat. Phenom., 185, 133 (2012).
[40] P. Satyarthi, S. Ghosh, B. Pandey, P. Kumar, C. L. Chen, C. L. Dong, W. F. Pong, D. Kanjilal, K. Asokan, and P. Srivastava, J. Appl. Phys., 113, 183708 (2013).
[41] K. Sun, N. Park, Z. L. Sun, J. G. Zhou, J. Wang, X. L. Pang, S. H. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. L. Wang, Energy Environ. Sci., 5, 7872 (2012).
[42] R. J. Mossanek, G. Domínguez-Cañizares, A. Gutiérrez, M. Abbate, D. Díaz-Fernández, and L. Soriano, J. Phys. Condens. Matter, 25, 4995506 (2013).
[43] C. Colliex, T. Manoubi, and C. Ortiz, Phys. Rev. B, 44, 11402 (1991).
[44] Y. Cao, X. Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J. W. Kim, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Nat. Commun., 7, 10418 (2016).
[45] R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J. M. Triscone, Adv. Mater., 22, 5517(2010).
[46] L. Wang, S. Ju, L. You, Y. Qi, Y. W. Guo, P. Ren, Y. Zhou, and J. Wang, Sci. Rep., 5, 18707 (2015).
[47] T. Kobayashi, N. Makimoto, Y. Suzuki, H. Funakubo, T. Oikawa, A. Wada, and R. Maeda, Jap. J. of Appl. Phys., 52, Number 9S1 (2013).
[48] J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B, 15, 627 (1966).
[49] B.W. Faughnan, Phys. Rev. B, 4, 3623 (1971).
[50] Y. Yang, K. C. Prade, Q. Jing, J. M. Wu, F. Zhang, Y. Zhou, Y, Zhang, and Z. L.Wang, ACS nano, 6, 6984 (2012).
[51] J. D. Zook and S. T. Liu, J. Appl. Phys., 49, 4604 (1978).
[52] M. Daniel, M. Stephanie, A. Rosa, K. G. Axel, F. Emanuel, B. Andrea, H. Jȍrg, and J. Christian, Catalysts, 4, 129 (2014).
[53] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science, 295, 651 (2002).
[54] M. Knupfer, and G. Paasch, J. Vac. Sci. Technol. A,23, 1072 (2005).
[55] M. Popinciuc, H. T. Jonkman, and B. J. van Wees, J. App. Phys., 100, 093714 (2006).
[56] J. Chaudhuri, M. H. Ng, D. D. Koleske, A. E. Wickenden, and R. L. Henry, Mater. Sci. Eng., 64, 99 (1999).
[57] Y. Gao, J. Lu, J. Zhang, and X. Li, RSC Adv., 5, 37635 (2015).
[58] Y. Li, Z. Qi, M. Liu, Y. Wang, X. Cheng, G. Zhang, and L. Sheng, Nanoscale, 6, 15248 (2014).
[59] J. Chakrabartty, R. Nechache, C. Harnagea, S. Li, and F. Rosei, Nanotechnology, 27, 215402 (2016).
[60] K. van Benthem, C. Elsässer, and R. H. French, J. Appl. Phys., 90, 6156 (2001).
[61] D. H. Kim, H. J. Lee, G. Kim, Y. S. Koo, J. H. Jung, H. J. Shin, J. Y. Kim , and J. S. Kang, Phys. Rev. B, 79, 033402 (2009).
[62] T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, and R. L. White, Phys. Rev. B, 64, 214422 (2001).
電子全文 電子全文(網際網路公開日期:20230807)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔