|
[1] L. D. Prockop, R. I. Chichkova, "Carbon monoxide intoxication: An updated review", J. Neurol. Sci., vol. 262(1-2), pp. 122–130, 2007. [2] Validation report of the CAMPS near-real time global atmospheric composition service. December 2018 – February 2019 [3] S. T Omaye, "Metabolic modulation of carbon monoxide toxicity", Toxicology, vol. 180(2), pp. 139-150, 2002. [4] M. Goldstein, "Causes of Carbon Monoxide Poisoning", J. Emerg. Nurs., vol. 34, pp. 538–542, 2008 [5] G. F Fine, L. M. Cavanagh, A. Afonja, R. Binions, "Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring", Sensors, vol. 10(6), pp. 5469-5502, 2010. [6] NFPA's Fire Protection Handbook, 20th Edition, 2008. [7] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice? ", J. Mater. Sci. Eng. B, vol. 139, pp. 1–23, 2007. [8] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. S. Presicce, A. M. Taurino, "Solid State Gas Sensors: State of the Art and Future Activities", Journal of Optoelectronics and Advanced Materials, vol. 5(5), 2003. [9] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, "Metal oxide gas sensors: Sensitivity and influencing factors", Sensors, vol. 10(3), pp. 2088−2106, 2010. [10] H. J. Kim, J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview”, Sens. Actuators B, vol. 192(1), pp. 607−627, 2014. [11] S. Theerapong, “Metal oxide semiconducting gas sensor technology”, Nakhon Phanom University Journal, vol. 1, pp. 17-29, 2015. [12] Q. Kuang, C. Lao, Z. L Wang, Z. Xie, L. Zheng, "High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire", J. Am. Chem. Soc., vol. 129, pp. 6070–6071, 2007. [13] L. H. Qian, K. Wang, Y. Li, H. T. Fang, Q. H. Lu, X. L. Ma, "CO sensor based on Au-decorated SnO2 nanobelt", Mater. Chem. Phys., vol. 100, pp. 82–84, 2006. [14] M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, "Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing", J. Phys. Chem. C, vol. 115, pp. 12763–12773, 2011. [15] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications", Nanotechnology, vol. 17, pp. 4995–4998, 2006. [16] B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, G. Zhang, "In2O3 Hollow Microspheres: Synthesis from Designed In(OH)3 Precursors and Applications in Gas Sensors and Photocatalysis", Langmuir, vol. 22, pp. 9380–9385, 2006. [17] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, Z. L. Wang, "Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks", Appl. Phys. Lett., vol. 88(20), 203101, 2006. [18] H. Y. Lai, T. H. Chen, C. H. Chen, "Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing", CrystEngComm, vol. 14, pp. 5589–5595, 2012. [19] A. Gurlo, R. Riedel, "In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing. Angew", Chem. Int. Ed., vol. 46, pp. 3826–3848, 2007. [20] M. E. Franke, T. J. Kopline, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?”, Small, vol. 2(1), pp. 36−50, 2006. [21] W. Li, C. Shen, G. Wu, Y. Ma, Z. Gao, X. Xia, G. Du, “New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy", J. Phys. Chem. C, vol.115(43), pp. 21258−21263, 2011. [22] M. Hübner, C. E. Simion, A. Haensch, N. Barsan, U. Weimar, “CO sensing mechanism with WO3 based gas sensors.” Sens. Actuators B, vol. 151(1), pp. 103−106, 2010. [23] A. Oprea, E. Moretton, N. Bârsan, W. J. Becker, J. Wöllenstein, U. Weimar, "Conduction model of SnO2 thin films based on conductance and Hall effect measurements", J. Appl. Phys., vol. 100, 033716, 2006. [24] F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth,; O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J. R. Morante, M. A. Juli, S. Mathur, A. Romano-Rodriguez, "Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires", Adv. Funct. Mater., vol. 18, pp. 2990–2994, 2008. [25] N. Bârsan, U. Weimar, "Conduction Model of Metal Oxide Gas Sensors", J. Electroceram., vol. 7, pp. 143–167, 2001. [26] T.A. Gundrizer, A.A. Davydov, "IR SPECTRA OF OXYGEN ADSORBED ON SnO2. React", Kinet. Catal. Lett., vol. 3, pp. 63–70, 1975. [27] M. Iwamoto, Y. Yoda, N. Yamazoe, T. Seiyama, "Study of Metal Oxide Catalysts by Temperature Programmed Desorption. 4. Oxygen Adsorption on Various Metal Oxides", J. Phys. Chem., vol. 82, pp. 2564–2570, 1978. [28] Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. "Interactions of tin oxide surface with O2, H2O and H2", Surf. Sci., vol. 86, pp. 335–344, 1979. [29] F. Morazzoni, C. Canevali, N. Chiodini, C. Mari,; R. Ruffo, R. Scotti, L. Armelao, E. Tondello, L. E. Depero, E. Bontempi "Nanostructured Pt-Doped Tin Oxide Films: Sol-Gel Preparation, Spectroscopic and Electrical Characterization", Chem. Mater., vol.13, pp. 4355–4361, 2001. [30] N. Bârsan, M. Schweizer-Berberich, W. Göpel, "Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius", J. Anal. Chem., vol. 365, pp. 287–304, 1999. [31] N. Bârsan, M. Hubner, U. Weimar, "Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds", Sens. Actuators B, vol. 157, pp. 510–517, 2011. [32] S. H. Hahn, N. Bârsan, U. Weimar, S. G. Ejakov, J. H. Visser, R. E. Soltis, "CO sensing with SnO2 thick film sensors: role of oxygen and water vapour", Thin Solid Films, vol. 436, pp. 17–24, 2003. [33] M. Ippommatsu, H. Ohnishi, H. Sasaki, T. Matsumoto, "Study on the sensing mechanism of tin oxide flammable gas sensors using the Hall effect", J. Appl. Phys., vol. 69, pp. 8368–8374, 1991. [34] A. Gurlo, N. Bârsan, A. Oprea, M. Sahm, T. Sahm, U. Weimar, "An n - to p -type conductivity transition induced by oxygen adsorption on α-Fe2O3", J. Appl. Phys., vol. 85, pp. 2280–2282, 2004. [35] V. V. Sysoev, T. Schneider, J. Goschnick, I. Kiselevb, W. Habicht, H. Hahn, E. Strelcov, A. Kolmakov, "Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films", Sens. Actuators B, vol. 139, pp. 699–703, 2009. [36] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property", Appl. Phys. Lett., vol. 85, pp. 5923–5925, 2004. [37] B. Kamp, R. Merkle, J. Maier, "Chemical diffusion of oxygen in tin oxide", Sens. Actuators B, vol. 77, pp. 534–542, 2001. [38] Safonova, O.; Bezverkhy, I.; Fabrichnyi, P.; Rumyantseva, M.; Gaskov, A. Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance Measurements. J. Mater. Chem. 2002, 12, 1174–1178. [39] M. Quirk, J. Serda, "Semiconductor manufacturing technology", Vol. 1. Upper Saddle River NJ Prentice Hall, 2001. [40] T. S. Chao, "Introduction to semiconductor manufacturing technology", SPIE PRESS, 2001. [41] X. Yang et al., "High stability of atmospheric pressure plasmas containing carbon tetrafluoride and sulfur hexafluoride", Plasma Sources Science and Technology, vol. 14, p. 412, 2005. [42] G. R. Nowling et al., "Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure", Plasma Sources Science and Technology, vol. 11, p. 97, 2002. [43] L. Chi-Hung et al., "Surface characterization of the SiO x films prepared by a remote atmospheric pressure plasma jet", Surface and Interface Analysis, 2008. [44] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, “The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,” IEEE Trans. Plasma Sci., vol. 26, no. 6, pp. 1685–1694, Dec. 1998. [45] C. Wu et al., "Characteristics of IGZO TFT Prepared by Atmospheric Pressure Plasma Jet Using PE-ALD Al2O3 Gate Dielectric," in IEEE Electron Device Letters, vol. 33, no. 4, pp. 552-554, April 2012. [46] Wu, Chien-Hung, et al. "The effect of thermal annealing on the properties of IGZO TFT prepared by atmospheric pressure plasma jet," ECS Transactions, vol. 45(7), pp. 189-197, 2012. [47] Nishi, Yoshio, R. Doering, "Handbook of semiconductor manufacturing technology," CRC Press, 2007. [48] T. F. Schulze, H. N. Beushausen, T. Hansmann, L. Korte, B. Rech, "Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating," Appl. Phys. Lett., vol. 95, pp. 2108-2110, 2009. [49] D. I. de Pomerai, B. Smith, A. Dawe, K. North, T. Smith, D. B. Archera, I. R. Duce, D. Jones, E. Peter M. Candido, "Microwave radiation can alter protein conformation without bulk heating," FEBS letters, vol. 543, pp. 93-97, 2003. [50] K. Song, C. Y. Koo, T Jun, D. Lee, Y Jeong, J Moon, "Low-temperature soluble InZnO thin film transistors by microwave annealing," Journal of Crystal Growth, vol. 326, pp. 23-27, 2011. [51] Liu, Zhifu, et al. "Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films," Sensors and Actuators B: Chemical, vol. 128(1), pp. 173-178, 2007. [52] C.-S. Lei, " High Quality Amorphous Indium-Gallium-Zinc-Oxide Thin Film by AP-PECVD for TFT-LCD Application," NCTU master thesis, 2018. [53] Y.-W. Tsao, "Performance Comparisons between Furnace and Rapid Thermal Annealing for GaZnO Source/Drain Electrodes of AP-PECVD Fabricated Amorphous InGaZnO Thin Film Transistors," NCTU master thesis, 2018. [54] G.-Y. Li, "Effects of Low-temperature Forming Gas Anneal on AP-PECVD Fabricated Amorphous InGaZnO Thin Film Transistors," master thesis, 2018. [55] D. J. Yang, G. C. Whitfield, N. G. Cho, P. S. Cho, I. D. Kim, H. M. Saltsburg, H. L. Tuller, "Amorphous InGaZnO4 films: Gas sensor response and stability," Sensors and Actuators B: Chemical, vol. 171, pp. 1166-1171, 2012. [56] J. Pan, R. Ganesan, H. Shen, S. Mathur, "Plasma-modified SnO2 nanowires for enhanced gas sensing," The Journal of Physical Chemistry C, vol. 114(18), pp. 8245-8250, 2010. [57] Y. Hu, Y. Liu, W. Li, M. Gao, X. Liang, Q. Li, L.M. Peng, "Observation of a 2D Electron Gas and the Tuning of the Electrical Conductance of ZnO Nanowires by Controllable Surface Band‐Bending," Advanced Functional Materials, vol. 19(15), pp.2380-2387, 2009. [58] X. Zou, J. Wang, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J. C. Ho, J. Li, C. Jiang, Y. Fang, W. Liu, L. Liao, "Rational Design of Sub-Parts per Million Specific Gas Sensors Array Based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors," Nano Lett., vol. 13, pp. 3287–3292, 2013.
|