跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/18 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅婉瑜
研究生(外文):Wan-Yu Lo
論文名稱:低強度混凝土RC結構受反覆荷載之力學行為
論文名稱(外文):Experimental Study on the Seimic Behavior of Reinforced Concrete Structures with Very Low Concrete Strength
指導教授:王勇智王勇智引用關係
指導教授(外文):Yung-Chih Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:127
中文關鍵詞:低強度混凝土彈性模數鋼筋混凝土梁反覆荷載等值應力塊伸展長度有效慣性矩
外文關鍵詞:very low concrete strengthelastic modulusreinforced concrete beamscyclic loadingequivalent stress blockdevelopment lengtheffective moment of inertia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以混凝土抗壓試驗與鋼筋混凝土(簡稱RC)梁實驗,分別受單向與反覆荷載方式,來探討低混凝土強度與一般混凝土強度之RC結構耐震行為差異。
在混凝土抗壓試驗結果方面,台灣混凝土彈性模數建議公式[16],用於很低強度之混凝土會有不保守現象。再者,低強度混凝土彈性模數亦會受到反覆荷載影響,其中會再低至經驗公式值的0.67倍。至於,低強度混凝土受單壓與反覆荷載之應力應變曲線試驗結果相近,且可以用Popovics[5]所提出的混凝土應力應變理論模式來作保守的描述。
文中第二部分,亦製作不同混凝土強度(設計強度f_c^'分別為21MPa與10MPa)之RC簡支梁試體,受三點載重之單向與反覆荷載,來探討低強度混凝土強度對RC結構影響。結果顯示,使用現行規範ACI 318-14[1]與Collins[3]之應力塊方法來評估一般與低強度混凝土之RC梁彎矩強度,其兩方法評估值相似,且均小於量測值;當中亦顯示,應力塊方法可用來評估低混凝土強度RC梁彎矩強度。然而,低強度RC梁最大彎矩發生於受壓頂部混凝土應變達0.006,與一般強度RC梁的應變達0.003,有明顯不同。對於實驗中量取一般與低強度RC梁之有效慣性矩(I_e)結果,在鋼筋降伏受力階段而言,不論受單向或反覆荷載,其I_e值約在0.2-0.3I_g(全斷面慣性矩)。從RC梁實驗也發現,以ACI 318-14規範伸展長度公式來評估低強度混凝土之RC結構握裹能力,會有不保守現象。
The purpose of the study is to observe the seismic behavior of reinforced concrete(RC) structures with normal and very low concrete strengths by means of the monotonic and cyclic loading tests on compressive concrete cylinders and RC simply supported beams.
The results of the concrete compressive test showed that the empirical equation of the concrete elastic modulus suggested by the Taiwan’s researcher [16] is not conservative for the very low concrete strength. Meanwhile, the effect of the cyclic loading on the elastic modulus of the very low-strength concrete is much more obvious than the normal concrete, which decreases to 67% of the value calculated by the empirical equation. The stress-strain curves measured from the monotonic and the cyclic loading are repealed in a similar excursion. Also the stress-strain curve of the very low concrete strength can be conservatively described by the theoretical model proposed by Popovics [5].
In the second part of the study, four simply supported RC beams with different concrete strengths (f_c^' respectively equals 21 MPa and 10 MPa), subjected to three-point monotonic and cyclic loading, were tested. The results showed that the stress block method proposed by ACI 318-14 [1] and Collins [3] could be used to evaluate the bending moment strength of RC beams with normal and very low concrete strength. The predicted values using these two methods are similar. These predicted values are smaller than the measured ones. That is, the stress block method can be used to evaluate the bending moment strength of RC beams with very low concrete strength. However, the maximum bending moment of the low-strength RC beam occurred at the concrete compressive strain of 0.006, which is significantly different from the strain of 0.003 measured from the normal RC beams. As for the effective moment of inertia (I_e), these values(I_e) measured from the tested beams at the yield loading stage are ranged between 0.2 to 0.3I_g, where I_gis the full sectional moment of inertia. These values represented as no different, regardless of the efficiency of monotonic or cyclic loading. It was also found that the development length equation specified in ACI 318-14 showed less conservative when the bond strength of the RC beams with very low-strength concrete was assessed.
摘要 i
Abstract iii
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
符號說明 xiii
第一章 緒論 1
1.1研究動機 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1混凝土受壓應力應變模型 3
2.2混凝土強度曲線應用於斷面分析 4
2.3混凝土反覆受力相關研究 6
2.4混凝土彈性模數 8
2.5 鋼筋混凝土伸展長度 9
2.6試體斷面評估 11
第三章 實驗規劃與試驗步驟 13
3.1 材料試體規劃 13
3.2材料試驗 13
3.2.1水泥 13
3.2.2 粗骨材 13
3.2.3 細骨材 14
3.2.3 試驗配比 14
3.2.4材料試驗試體製作 14
3.3 材料試驗儀器 15
3.3.1 彈性模數應變環 15
3.3.2靜態數據擷取器 15
3.3.3 抗壓試驗機 15
3.4 材料試驗方法 15
3.4.1 單壓 16
3.4.2 反覆荷載 16
3.5 結構試驗方法與步驟 16
3.5.1試體設計 16
3.5.2試體製作 17
3.5.3結構試驗設備 18
3.6實驗數據處理 19
3.6.1 材料數據取法 19
3.6.2圓柱抗壓數據反覆取法 19
3.6.3 RC梁數據處理 20
3.6.3.1 理論標稱載重Pn 20
3.6.3.2 層間變位角DR 20
3.6.3.3 試體之勁度Ki 20
3.6.3.4 斷面有效慣性矩 21
第四章 試驗結果與討論 22
4.1混凝土圓柱試體材料試驗結果與討論 22
4.1.1彈性模數探討 22
4.1.2混凝土應力應變模型 23
4.1.3 圓柱試體的單壓和反覆荷載的曲線參數之比較 24
4.1.4反覆荷載包絡線與共通點 26
4.1.5 等效矩形應力塊參數 26
4.1.6本試驗混凝土圓柱試體大小變異性研究 27
4.2 RC梁結構受力行為 28
4.2.1 NRB-mon.試體一般行為 28
4.2.2 LRB-mon.試體一般行為 29
4.2.3 NRB-cyc.試體一般行為 31
4.2.4 LRB-cyc. 試體一般行為 32
4.3梁試驗結果探討 33
4.3.1受單壓與反覆荷載破壞行為 33
4.3.2勁度折減探討 34
4.3.3強度折減探討 35
4.3.4材料試驗結果應用於梁試驗 37
4.3.5有效慣性矩 39
第五章 結論與建議 40
5.1結論 40
5.2建議 42
參考文獻 43
表 46
圖 57
附錄A 試體標稱載重、剪力與握裹檢核 99
附錄B 試體標稱載重計算 103
[1] ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete, ACI 318-14, American Concrete Institute, 2014.
[2] 中國土木水利工程學會,混凝土工程設計規範與解說,土木401-100,2011。
[3] M. P. Collins, D. Mitchell, Prestressed Concrete Structures, Prentice-Hall, New Jersey, 1991.
[4] J. Moehle, Seismic Design of Reinforced Concrete Buildings, McGraw-Hill Education, United States of America, 2015
[5] Popovics, S.,A “Review of Stress-Strain Relationships for Concrete,” ACI Journal, Proceedings V.67, No. 6, March 1970, pp. 243-248.
[6] Rüsch, H., “Researches Toward a General Flexural Theory for Structural Concrete,” ACI Journal, Proceedings V. 57, July 1960, pp. 1-28.
[7] Karsan, I. Demir, and Jirsa, James O., “Behavior of Concrete Under Compressive Loadings,” Journal of Structural Division, ASCE, Vol. 95, No. ST12, Dec. 1969, pp. 2543-2563.
[8] Ataullah Maher and David Darwin, “Mortar Constituent of Concrete in Compression,” ACI Journal, V.79, No.2, March-April 1982, pp. 100-109.
[9] Duane E. O. and Antoine E. N., “Properties of Steel Fiber Reinforced Concrete under Cyclic Loading,” ACI Materials Journal, V.85, No.4, Jul-August 1988, pp. 254-261.
[10] Giuseppe C., Sidney M., and Gaetano Z., “Compressive Stress-Strain Behavior of Normal and High-Strength Carbon-Fiber Concrete Reinforced with Steel Spirals,” ACI Materials Journal, V.96, No.1, Jan.-Feb.1999, pp. 27-34.
[11] Spyridon A. P. and Andreas P. L., “Ultra-High-Performance Fiber-Reinforced Concrete Under Cyclic Loading,” ACI Materials Journal V.113, No.4, July 2016, pp. 15-122.
[12] Eivind H., Hanson N. W., and Douglas McHENRY, “Concrete Stress Distribution in Ultimate Strength Design,” ACI Journal Proceedings, V.52, No.12, Dec. 1955, pp. 455-480.
[13] 高士軒,「二氧化碳養護對混凝土性質影響之研究」,碩士論文,王勇智指導,國立中央大學土木工程學研究所,桃園,民國106年六月(2017)。
[14] 謝延浩,「非標準箍筋配置之低強度混凝土柱耐震行為探討」,碩士論文,王勇智指導,國立中央大學土木工程學研究所,桃園,民國一百年六月(2011)。
[15] 郭珈均,「鋼筋握裹能力不足之 RC結構行為模擬研究」,國科會計畫,王勇智指導,國立中央大學土木工程系學士,桃園,民國106年十月(2017)
[16] 廖文正, 林致淳,詹穎雯,「台灣混凝土彈性模數建議公式研究」,中國土木水利工程學刊,第31卷,第3期,pp.5-31。
[17] Whitney C. S., “Design Of Reinforced Concrete Members Under Flexure Or Combined Flexure And Direct Compression,” ACI Journal Proceedings, V.33, No.3, Mar. 1937, pp. 483-498.
[18] Paulay, T.,and Priestley, M.J.N., Seismic Design of Reinforced Concrete and Mansonry Building, John Wiley & Sons, New York, 1992.
[19] ACI Committee 374, Guide for Testing Reinforced Concrete Structural Element under Slowly Applied Simulated Seismic Loads (ACI374.2R-13), American Concrete Institute, 2013
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top