跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張誠祐
研究生(外文):Chen-Yu Chang
論文名稱:建置半導體設備商維修管理系統之研究
論文名稱(外文):Research on Developing the Semiconductor Equipment Maintenance Management System
指導教授:高信培高信培引用關係
指導教授(外文):Hsin-Pei Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所在職專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:76
中文關鍵詞:電腦化設備維修管理資料系統企業資源管理系統根本原因分析法
外文關鍵詞:CMMS (Computerized Maintenance Management)RCA (Root Cause Analysis)AKCS (Auxiliary Knowledge Capture System)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:565
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
80年代的初期 CMMS (Computerized Maintenance Management) 電腦化設備維修管理資料系統有詳述如何建置設備維修管理系統的方法,企業建置個別的維修管理系統。此後 SAP/CRM 以其完善的客戶管理,進一步整合物流及財務支援系統,逐漸成為主流維修管理系統。
資訊系統是企業流程管理 (Business Process Management)之骨幹,而流程建置是攸關系統成敗之關鍵。以半導體的主要設備供應商為例,大多廠商已採用SAP/CRM (customer relation module) 維修系統。設備商利用此系統來記錄相關的維修服務,連結 CRM有關的客戶、維修及物料主檔,記錄每一筆的工單耗費的資源如工時、物料及工作內容,作為後續的請款(Billing)作業的依據。在後端的資料分析,使用BI、HANA、Power BI,提供企業活動的效能分析如營收管理、成本管控及資源的分配效率、缺工缺料改善等等,進而作為決策管理中不可獲缺之工具。
本研究目的在探討根本原因分析法(Root Cause Analysis)及設備維修關鍵指標,建立 SAP/CRM的維修輔助系統,改善半導體供應商在採用 SAP/CRM 在 Knowledge capture 時所面臨之結構問題以及資訊收集的流程,將CRM 維修資料的有效再利用,減少重工、減少人力及物料的浪廢,進而運用PHM的觀念將有限資源作有效的分配,在未來的 AI 人工智慧運用於半導體設備維修建立基礎。
In decades, the SAP /CRM (Customer Relation Module) dominates the primary customer service systems. CRM connects the customer, service and material module data, collects all direct/indirect workforce and material usage. It's an excellent for the billing process. Furthermore, the post-data analysis as BI (Business Intelligence) or HANA provides a tremendous advantage in efficiency improve, resource and cost management for the decision making in the enterprise operation.
The process setup is the key success factor in the enterprise operation. In this paper, we will study how to utilize RCA (Root Cause Analysis) with CMMS and PHM concepts to build the AKCS Auxiliary Knowledge Capture System and coordinate with SAP/CRM System. Apply the ARIS (Architecture of Integrated Information System) build-in the process. The AKCS vs. SAP/CRM will also be practical work in Industrious 4.0 and Artificial Intelligence to the next generation
Table of content
摘要 i
Abstract ii
誌謝 iii
Table of content iv
List of figure vi
List of table viii
Chapter 1 Introduction 1
1-1 Research background and motivation 1
1-2 Research objective and methodology 3
1-3 Research range 6
1-4 Research framework and process 6
Chapter 2 Literature Review 8
2.1 CMMS (Computerized Maintenance Management) 8
2.2 Predictive maintenance 12
2.3 Multiple Decision Criteria Analysis in Maintenance Policy setup and IT Framework 18
2.3.1 AHP Analytic Hierarchy Process 19
2.3.2 MCDA analysis and IT framework support 24
Chapter 3 Methodology 27
3.1 Root Cause Analysis method 27
3.1.1 Cause-and-effect diagram (CED) 27
3.1.2 Interrelationship Diagram (ID) 29
3.1.3 Current Reality Tree (CRT) 30
3.2 Overall Equipment Effectiveness or Efficiency OEE 34
Chapter 4 Case study – AKCS Auxiliary Knowledge Capture system 39
4.1 SAP/CRM maintenance module in CRT model analysis 39
4.1.1 CRT analysis – Current Reality Tree 40
4.1.2 CRT analysis – CRT analysis – Solution 42
4.1.3 CRT analysis – future tree for knowledge capture 43
4.2 ACKS - Knowledge capture system 44
4.2.1 ACKS - Knowledge code methodology 45
4.2.2 ACKS – Action Plan 01-99 codes methodology 49
4.2.3 ACKS – RCA code methodology 52
4.3 Build AKCS Auxiliary knowledge capture system per ARIS 55
4.4 OEE improvement with AKCS 57
4.5 AKCS Data Analysis 58
Chapter 5 Conclusion and future research 60
Reference 62
1. Terry Wireman, Computerize Maintenance Management Systems, 1994
2. Evangelos Triantaphyllou and Stuart H. Mann, Using the analytic hierarchy process for decision making in engineering applications: Some challenges, International Jounal of Industrial Engineering: Applications and Practice, Vol 2, 35-44, 1995
3. Boeing, D1-9000-1 AQS Advanced Quality System Tools, 1998
4. Ricky Smith and Bruce Hawkins, Lean Maintenance: Reduce Costs, Improve Quality, and Increase Market Share, Butterworth-Heinemann, First Edition, 2004
5. Mark Doggett, Root Cause Analysis: A Framework for Tool Selection, Quality Management Journal, ResearchGate, January 2006
6. A. J. DE RON* and J. E. ROODA, OEE and equipment effectiveness: an evaluation, International Journal of Production Research, Vol. 44, No 23, 4987-5003, 2006
7. Kevin O’Brien, et al, Performance demonstration of significant availability improvement in lithography light sources using GLX (TM) control system, Proc. Of SPIE Vol. 6924, 0277-786X, 2008
8. Ashraf Labib, Computerised Maintenance Management Systems, 17.1-17.6, 417-436, ResearchGate, 2008
9. Lloyd J. Taylor, III and Soumya Nayak, Goldratt’s Theory Applied to the Problems Associated with an Emergency Department at a Hospital, MDPI Journal ADMSCI 2040235, 235-249, 2012
10. Gustav Fredriksson, An analysis of maintenance strategies and development of a model for strategy formulation, Volvo Truck Case Study, Chalmers University, 2012
11. Amine Nehari Talet, KM Process and CRM to manage Customer Knowledge Relationship Management, IACSIT IPEDR Vol. 29, 2012
12. Joseph O. Chan, Big Data Customer Knowledge Management, Communication of IIMA: Vol. 14: Issue 3, Article 5, 2014
13. Gian Antonio Susto, et al, Machine Learning for Predictive Maintenance: A Multiple Classifier Approach, IEEE Transactions on Industrial Informatics, Vol.11, No.3, 812-819, June 2015
14. Michael Wienker, et al, The Computerized Maintenance Management System: An essential Tool for World Class Maintenance, Procedia Engineering 138, 413-420, 2016
15. Bernard W. Taylor III, Introduction to Management Science, 12 Edition, 2016
16. Zhaojun Li, A DFMEA-based Reliability Prediction Approach in Early Product Design, IEEE 978-1-5090-5284-4, 2017
17. J.F.W. Peeters, et al, Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner, Reliability Engineering & System Safety, Vol 172, 36-44, 2018
18. Maria Rosaria Guarini, et al, A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes, MDPI Journal Sustainability, 507, 2018
Network Reference
19. SEMI Semiconductor industry association, http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=2515
20. Equipment company annual revenues, https://finance.yahoo.com
SIA Semiconductor Industry Association Report
21. SEMI E10-0312 - Specification for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM) and Utilization, 2012
22. Beyond Borders The Global Semiconductor Value Chain, May 2016
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top