(3.215.183.251) 您好!臺灣時間:2021/04/22 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳怡蓁
研究生(外文):Yi-Zhen Chen
論文名稱:使用分支定界法以及最小成本最大流量求最小庫存持有成本下之最大訂單允諾數量
論文名稱(外文):Using Branch and Bound Algorithm and Minimum Cost Maximum Flow for Maximizing Committed Order Quantities Under Minimum Holding Cost
指導教授:沈國基沈國基引用關係
指導教授(外文):Gwo-Ji Sheen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:71
中文關鍵詞:可承諾量批量訂單允諾順序
外文關鍵詞:available-to-promisebatchcommitted priorities of orders
相關次數:
  • 被引用被引用:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此研究中,我們探討在C公司的n張訂單與m個供給,其環境為訂單的總需求數量大於公司生產的總供給數量,C公司允諾訂單的機制為採用批次可允諾量以及後向耗用模式,在一固定時間區間內將這一批的顧客需求做拉線的動作以找出哪些訂單是能夠被滿足哪些訂單是不會被滿足的。由於C公司的總供應量小於顧客的總需求量,我們不會允諾全部的需求訂單,所以需要將這些訂單做允諾的優先順序,知道哪些訂單可以被允諾、哪些訂單不會被允諾,以及被允諾的訂單其被供應的數量為多少來達到公司最大的效益,我們的研究目標為在最小持有庫存成本下求最大允諾數量。
為了求出此問題的最佳解,我們使用分支定界演算法以及最小成本最大流量計算最大化的允諾數量以及來計算出我們的目標。
Recently, the available-to-promise (ATP) function becomes critical in supply chain management, since it provides appropriate links between production resources and customer orders. In this research, company environment with n demands and m supplies is considered. It is assumed that the total quantity of demands are larger than that of supplies. Batch available-to-promise (batch ATP) and backward consumption mode are applied to commit order promise and fulfillment. Orders are collected periodically, then pegging is at a particular time point in order to find out which order can be promised. The company cannot commit all of demands because the total supplies are smaller than demands which is our assumption. Thus we need to schedule the priority of these orders to find out which order can be accepted or rejected, and the total of accepted demands are then obtained. The company objective is maximizing the committed quantities under minimum inventory holding cost.
In order to get the optimal solution for this problem, we present a branch and bound algorithm and the minimum cost maximum flow to get maximum committed quantities.
目錄
摘要i
Abstract ii
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Problem definition 3
1.3 Research objectives 8
1.4 Research methodology 8
1.5 Research framework 9
Chapter 2 Literature Review 12
2.1 Batch available to promise 12
2.2 Branch and bound algorithm 13
Chapter 3 Methodology 16
3.1 Notations 16
3.2 The labeling function 17
3.3 Min-cost max-flow approach 18
3.4 Branching scheme 21
3.5 Bounding scheme 26
3.6 Branch and bound Algorithm 27
Chapter 4 Computational Analysis 30
4.1 Instance Generation 30
4.2 Validation of the branch and bound algorithm 31
4.3 Performance of the branch and bound algorithm 33
Chapter 5 Conclusion 37
5.1 Research Contribution 37
5.2 Research Limitation 37
5.3 Further Research 38
Reference 39
Appendix 42
Ababei, C., & Kavasseri, R (2011). Efficient network reconfiguration using minimum cost maximum flow-based branch exchanges and random walks-based loss estimations. IEEE Transactions on Power Systems, 26(1), 30-37.
Bozhenyuk, A., Gerasimenko, E., & Rozenberg, I (2012). The methods of maximum Flow and minimum cost flow finding in fuzzy network. Concept Discovery in Unstructured Data Workshop co-located with the 10th International Conference on Formal Concept Analysis. 1-12.
CHEN, C. Y., Zhao, Z., & Ball, M. O (2002). A model for batch advanced available‐to promise. Production and Operations Management, 11(4), 424-440.
Chen, J., & Dong, M (2014). Available-to-promise-based flexible order allocation in ATO supply chains. International Journal of Production Research, 52(22), 6717-6738.
Choi, S. Y., Shin, M. C., & Cha, J. S (2006). Loss reduction in distribution networks using cyclic best first search. International Conference on Computational Science and Its Applications, 312-321.
Dolan, A., & Aldous, J (1993). Networks and algorithms: an introductory approach. John Wiley & Sons,158-161.
Hadji, M., & Zeghlache, D (2012). Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. IEEE Fifth International Conference on Cloud Computing,876-882.
Jamal, J., Shobaki, G., Papapanagiotou, V., Gambardella, L. M., & Montemanni, R (2017). Solving the sequential ordering problem using branch and bound. IEEE Symposium Series on Computational Intelligence,1-9.
Jeong, B., Sim, S. B., Jeong, H. S., & Kim, S. W (2002) An available-to-promise system for TFT LCD manufacturing in supply chain. Computers & Industrial Engineering, 43(1-2), 191-212.
Jung, H (2010). An available-to-promise model considering customer priority and variance of penalty costs. The International Journal of Advanced Manufacturing Technology, 49(1-4), 369-377.
Kao, G. K., Sewell, E. C., & Jacobson, S. H. (2009). A branch, bound, and remember algorithm for the 1|r_i| ∑ t_i scheduling problem. Journal of Scheduling, 12(2), 163.
Kao, G. K., Sewell, E. C., Jacobson, S. H., & Hall, S. N. (2012). New dominance rules and exploration strategies for the 1| r_i |∑ U_i scheduling problem. Computational Optimization and Applications, 51(3), 1253-1274
Lin, J. T., Hong, I. H., Wu, C. H., & Wang, K. S (2010). A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains. Computers & Industrial Engineering, 59(4), 720-729.
Lin, Q., & Tordesillas, A (2014). Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions. Journal of industrial and management optimization, 10(1), 337-362.
Meyr, H. (2009). Customer segmentation, allocation planning and order promising in make-to-stock production. OR spectrum, 31(1), 229-256
Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C (2016). Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19, 79-102.
Rabbani, M., Farshbaf-Geranmayeh, A., & Vahidi, F. (2018). A batch-wise ATP procedure in hybrid make-to-order/make-to-stock manufacturing environment. Journal of Quality Engineering and Production Optimization, 3(1), 1-12.
Ritt, M (2016). A branch-and-bound algorithm with cyclic best-first search for the permutation flow shop scheduling problem. IEEE International Conference on Automation Science and Engineering, 872-877.
Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm for the simple assembly line balancing problem. INFORMS Journal on Computing, 24(3), 433-442.
Sewell, E. C., Sauppe, J. J., Morrison, D. R., Jacobson, S. H., & Kao, G. K. (2012). A BB&R algorithm for minimizing total tardiness on a single machine with sequence dependent setup times. Journal of Global Optimization, 54(4), 791-812.
Sheen. G (2018) “min-cost max-flow model for determining job priority in ATP problem”, personal communication.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔