(3.230.76.48) 您好!臺灣時間:2021/04/15 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳怡先
研究生(外文):I Hsien Chen
論文名稱:鈀銅/二氧化矽雙金屬催化劑之製備及對其性質之影響
論文名稱(外文):Preparation of Pd-Cu/silicon dioxide bimetallic catalyst and its effect on its properties
指導教授:陳郁文陳郁文引用關係
指導教授(外文):Yu Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:71
中文關鍵詞:蛋殼型觸媒初濕浸漬鈀銅雙金屬
外文關鍵詞:egg-shell catalystincipient-wetness impregnationPd-Cu bimetallic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬在二氧化矽球形顆粒在許多化學工業的應用中扮演著重要的角色,對其製備方法的理解有助於提高催化劑的催化效率。本研究的主要目的是開發一種製備具有蛋殼結構的 Pd-Cu/SiO2球形顆粒催化劑用於生產乙酸烯丙酯的方法。醋酸丙酯是一種重要的有機化學品。在二氯化鈀存在下液相合成乙酸乙烯酯的情況下發現了烯烴的乙酰氧基化。隨後改進液相方法,然後開發乙烯和丙烯的氣相乙酰氧基化, PdCu/SiO2是該反應的催化劑。然而,由於反應介質是酸性的,Pd 和 Cu 會遷移並燒結,導致嚴重的失活。如何製造薄殼的 PdCu 奈米合金是至關重要的。在本研究中,分別使用直徑為 5 和 3 mm 的天然和合成球形二氧化矽作為載體,測試了五種具有不同步驟的製備方法。基本上,通過浸漬添加金屬鹽,然後使用鹼溶液將金屬陽離子推到殼側,利用比表面積和孔隙率分析儀,光學顯微鏡,X射線衍射,透射電子顯微鏡和高分辨率透射電子顯微鏡對樣品進行分析。天然二氧化矽含有鈉陽離子,製備時不穩定,導致孔結構損失。合成二氧化矽不含鈉陽離子,孔結構在製備中非常穩定。在製備中使用弱鹼性溶液不會產生蛋殼結構。 Pd 和 Cu 的浸漬水溶液的量也影響殼層的厚度。以下方法製備的催化劑在所有催化劑中具有最薄的殼層: (i) 浸漬Pd 和Cu 金屬陽離子溶液, (ii) 在 110℃ 下乾燥,(iii) 適度加入鹼性溶液以將金屬陽離子推向殼側, (iv) 在 450℃ 下煅燒。
The distribution of metals in a silica bead plays a crucial role in many industry-oriented applications and an understanding of its preparation method is helpful for the improvement of catalytic efficiency of catalyst. The main purpose of this study was to develop a method to prepare Pd-Cu/SiO2 bead catalyst with egg-shell structure for the production of allyl acetate. Propyl acetate is an important chemical in industry. The acetoxylation of olefins was discovered in the case of the liquid-phase synthesis of vinyl acetate in the presence of palladium dichloride. Subsequent modification of the liquid-phase process and then to the development of the gas-phase acetoxylation of ethylene and propylene was developed. PdCu/SiO2 was used as the catalyst for this reaction in industry. However, since the reaction medium is acidic, Pd and Cu would migrate and sinter, causing severe deactivation. How to make PdCu nano alloy in the thin shell is crucial. In this study, natural and synthetic spherical silica with 5 and 3 mm size, respectively, was used as the carrier. Five preparation methods with various steps were tested. In principle, metal salts were added by impregnation, and then using alkali solution to push metal cations to shell side. Drying, calicneation, and concentration of alkali solution influence the distribution of metal in silica beads significantly. All the samples were characterized by nitrogen sorption, optical microscope, X-ray diffraction, transmission electron microscopy, and high resolution-transmission electron microscopy. Natural silica bead contains sodium cation, it was not stable in acidic condition during preparation process, and resulted in loss of pore structure. The synthetic silica does not have sodium cation, the pore structure is very stable in preparation. Using weak basic solution in preparation did not form egg-shell structure. The amount of aqueous solutions of Pd and Cu cations also affected the particle size of metals. The catalyst prepared by the following method had the thinnest shell among all catalysts: (i) impregnation Pd and Cu metal cations solution, (ii) drying at 110 oC, (iii) adding basic solution in moderation to push metal cations to shell side, (iv) calcination at 450 oC.
中文摘要……………………………………………………………………………………….I
Abstract………………………………………………………………………………………..II
Table of Contents IV
List of Tables VI
List of Figures VII
List of Schemes IX
CHAPTER 1 INTRODUCTION 1
1.1 Selectivity Pd and Cu metal 2
1.2 Egg-Structure Catalyst 2
CHAPTER 2 LITERATURE REVIEW 5
2.1 Preparations Methods of Supported Metal Catalysts 5
2.1.1 Selection of support 5
2.1.2 Impregnation method 5
2.1.3 Precipitation method 7
2.1.4 Sol-gel method 9
2.2 Parameters of Pretreatment for Bulk Catalyst and Support Preparation 11
2.2.1 Bimetallic catalyst 11
2.2.2 Drying 12
2.2.3 Calcination and sintering 13
2.3 The Acetoxylation of Olefin by Palladium 13
CHAPTER3 EXPERIMENTAL 16
3.1 Material 16
3.2 Preparation of Pd-Cu /SiO2 Catalysts 16
3.2.1 Powder Catalysts 16
3.2.2 Egg-shell structure catalysts 17
3.3 Structure and Properties of Catalyst 18
3.3.1 Optical microscopy (OM) 18
3.3.2 X-ray diffraction (XRD) 19
3.3.3 Specific surface and porosimetry analyzer (ASAP) 19
3.3.4 Transmission electron microscopy (TEM) 20
3.3.5 High resolution transmission electron microscopy (HRTEM) 20
3.4 Acetylation Reaction 21
CHAPTER 4 CHARACTERISTICS OF Pd-Cu/SiO2 CATALYSTS AND OXIDATIVE ACETOXYLATION OF PROPYLENE 22
4.1 Introduction 22
4.2 Results and Discussion 24
4.2.1 Sectional view by OM 24
4.2.2 XRD 30
4.2.3 ASAP 33
4.2.4 TEM 41
4.2.5 HRTEM 44
4.3 Conclusion 52
REFERENCE 53
Adkins, H., Kinsey, M.E., Folkers, K., Condensation Reactions of Acetaldehyde over Certain Oxide Catalysts at Pressures from 1 to 500 Atmospheres of Hydrogen., Ind. Eng. Chem., 22, 1046-1048. (1930)

Agarwal, A.K., Cant, N.W., Wainwright, M.S., Trimm, D.L., Catalytic hydrogenolysis of esters: a comparative study of the reactions of simple formates and acetates over copper on silica., J. Mol. Catal., 43, 79-92. (1987)

Bond, G.C., Rawle, A.F., Catalytic hydrogenation in the liquid phase. Part 1. Hydrogenation of isoprene catalysed by palladium, palladium-gold and palladium- silver catalysts., J. Mol. Catal. A Chem., 109, 261-271. (1996)

Cauqui, M.A., Rodríguez-Izquierdo, J.M., Application of the sol-gel methods to catalyst preparation., J Non Cryst Solids, 147-148, 724-738. (1992)

Claus, P., Lucas, M., Lücke, B., Berndt, T., Birke, P., Selective hydrogenolysis of methyl and ethyl acetate in the gas phase on copper and supported Group VIII metal catalysts., Appl. Catal. A Gen., 79, 1-18. (1991)

Coq, B., Figueras, F., Bimetallic palladium catalysts: Influence of the co-metal on the catalyst performance., J. Mol. Catal. A Chem., 17, 117-134. (2001)

Dasireddy V.D.B.C., Likozar B., The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity, Renew. Energy, 452-460. (2019).

Fiermans, L., De Gryse, R., De Doncker, G., Jacobs, P.A., Martens, J.A., Pd segregation to the surface of bimetallic Pt-Pd particles supported on H-β zeolite evidenced with x-ray photoelectron spectroscopy and argon cation bombardment., J. Catal., 193, 108-114. (2000).

Gong, Q., Gong, S.P., Zheng, J.W., Cheng, X., Yang, W.F., Zhang, T.F., Huang, L.Y., High catalytic activity of carbon supported PdCu alloyed catalysts toward oxygen reduction reaction., ECS Transactions, 85, 845-854. (2018).

Guczi, L., Schay, Z., Stefler, Gy., Liotta, L.F., Deganello, G., Venezia, A.M., Pumice-supported Cu-Pd catalysts: Influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene., J. Catal., 182, 456-462. (1999).

Han, Y.-F., Kumar, D., Sivadinarayana, C., Goodman, D.W., Synthesis of vinyl acetate over Pd and Pd-Au catalysts., ACS Natl. Meet. Book Abstr., 227. (2004)

Haukka, S., Lakomaa, E.-L., Suntola, T., Adsorption controlled preparation of heterogeneous catalysts., Stud. Surf. Sci. Catal., 120 A, 715-750. (1999).

Hu Q., Fan G., Yang L., Li F. , Aluminum-doped zirconia-supported copper nanocatalysts: Surface synergistic catalytic effects in the gas-phase hydrogenation of esters., ChemCatChem, 6, 3501-3510. (2014).

Huang, T.-J., Yu, T.-C., Chang, S.-H., Effect of calcination atmosphere on CuO/γ-Al2O3 catalyst for carbon monoxide oxidation., Appl. Catal., 52, 157-163. (1989).

Jung, H.K., Eun, W.S., Woo, J.K., Jae, D.P., Sang, H.M., Selective hydrogenation of acetylene on TiO2-added Pd catalysts., J. Catal., 208, 310-320. (2002).

Kikhtyanin, O., Pospelova, V., Aubrecht, J., Lhotka, M., Kubička, D., Effect of atmosphere calcination and temperature on the hydrogenolysis activity and selectivity of copper-zinc catalysts., Catalysts, 8, 446 . (2018).

Kohler, M.A., Wainwright, M.S., Trimm, D.L., Cant, N.W., Reaction Kinetics and Selectivity of Dimethyl Succinate Hydrogenolysis over Copper-Based Catalysts., Ind. Eng. Chem. Res., 26, 652-656. (1987).

Kojima Y.-U., Kotani S., Sano M., Suzuki T., Miyake T., Hydrogenation of dimethyl adipate to 1,6-hexanediol on supported Rh-Sn catalysts., J. Jpn. Pet. Inst., 56, 133-141, (2013).

Krylov, O.V., Matyshak, V.A., Intermediates and mechanisms of heterogeneous catalytic reactions. Oxidation reactions involving molecular oxygen and sulfur., Russ. Chem. Rev., 64, 167-186. (1995).

Kumar, D., Chen, M.S., Goodman, D.W., Synthesis of vinyl acetate on Pd-based catalysts., Catal Today, 123, 77-85. (2007).

Lekhal, A., Glasser, B.J., Khinast, J.G., Influence of pH and ionic strength on the metal profile of impregnation catalysts., Chem. Eng. Sci., 59, 1063-1077. (2004).

Li, W., Li, Y., Wang, K., Dong, L., Yuan, X., Fan, X., Study on Process Conditions and Pd-Cu Catalysts for Nitrate Acid Reduction in Ethanol., Huaxue Fanying Gongcheng Yu Gongyi, 33, 402-408. (2017)

Liu, X., Glasser, B., Khinast, J., Impact of impregnation and drying on the metal distribution in supported catalysts. AIChE Ann. Meet., 1 . (2007).

Minachev, Kh.M., Nefedov, O.M., Kharlamov, V.V., Panov, S.Yu., Politanskii, S.F., Metal-containing zeolite catalysts for the oxidative acetoxylation of propylene., Russ Chem Bull, 30, 1191-1196. (1981).

Munnik, P., De Jongh, P.E., De Jong, K.P., Recent Developments in the Synthesis of Supported Catalysts., Chem. Rev., 115, 6687-6718. (2015).

Pan, Y., Shen, X., Yao, L., Bentalib, A., Peng, Z., Active sites in heterogeneous catalytic reaction on metal and metal oxide: Theory and practice., Catalysts, 8, 478 . (2018).

Politanskii, S.F., Shkitov, A.M., Shpiro, E.S., Antoshin, G.V., Minachev, Kh.M., Moiseev, I.I., Nefedov, O.M., Oxidative acetoxylation of propylene in the presence of palladium catalysts - II. Nature of the active center., Russ Chem Bull, 30, 1186-1190. (1981).

Pongthawornsakun, B., Wimonsupakit, N., Panpranot, J., Preparation of TiO2 supported Au–Pd and Cu–Pd by the combined strong electrostatic adsorption and electroless deposition for selective hydrogenation of acetylene., J. Chem. Sci., 129, 1721-1734. (2017).

Pongthawornsakun, B., Mekasuwandumrong, O., Prakash, S., Ehret, E., Santos Aires, F.J.C., Panpranot, J., Effect of reduction temperature on the characteristics and catalytic properties of TiO2 supported AuPd alloy particles prepared by one-step flame spray pyrolysis in the selective hydrogenation of 1-heptyne., Appl Catal A Gen, 506, 278-287. (2015).

Pritchard J., Filonenko G.A., Van Putten R., Hensen E.J.M., Pidko E.A., Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: History, advances and future directions., Chem. Soc. Rev., 44, 3808-3833. (2015).

Richardson, J.T., Propp, J.L., Pore size effects on sintering of Ni Al2O3 catalysts., J. Catal., 98, 457-467. (1986).

Sánchez M.A., Torres G.C., Mazzieri V.A., Pieck C.L., Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols–a review., J. Chem. Technol. Biotechnol.,92, 27-42. (2017).

Schneider, P., Emig, G., Hofmann, H. Kinetic, Investigation and Reactor Simulation for the Catalytic Gas-Phase Oxidation of n-Butane to Maleic Anhydride., Ind. Eng. Chem. Res., 26, 2236-2241. (1987).

Tan X., Zhu M., Chen X.-R., Yu D.-W., Xu Y., Mei H., Effect of calcination temperature of Cu-Mn-Al catalysts on its catalytic performance in dehydrogenation of 1-methoxy-2-propanol., Huagong Xiandai, 38,104-108. (2018).

Tan Y., Xie H., Cui H., Han Y., Zhong B., Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase., Catal. Today, 104, 25-29. (2005).

Tao, F., Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts., Chem. Soc. Rev., 41, 7977-7979. (2012).

Toebes, M.L., Van Dillen, J.A., De Jong, K.P., Synthesis of supported palladium catalysts., J. Mol. Catal. A Chem., 173, 75-98. (2001).

Varma, A., Morbldelli, M., Optimal Catalyst Activity Profiles in Pellets. 2. the Influence of External Mass Transfer Resistance., Ind. Eng. Chem. Fundam., 21, 284-289. (1982).

Wang B., Chang T.-Y., Jiang Z., Wei J.-J., Fang T., Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole, Appl. Catal. B Environ.,261-272,. (2019).

Wang D., Weinstein A.B., White P.B., Stahl S.S., Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions., Chem. Rev., 118, 2636-2679. (2018).

Wang, B., Chang, T.-Y., Jiang, Z., Wei, J.-J., Fang, T., Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole., Appl. Catal. B Environ., 261-272. (2019).

Witońska, I.A., Walock, M.J., Dziugan, P., Karski, S., Stanishevsky, A.V., The structure of Pd-M supported catalysts used in the hydrogen transfer reactions (M = In, Bi and Te)., Appl Surf Sci, 273, 330-342. (2013).

Yang Q., Hou R., Sun K., Tuning butene selectivities by Cu modification on Pd-based catalyst for the selective hydrogenation of 1,3-butadiene., J. Catal., 374, 12-23. (2019).

Yuhu W., Z. Nig., Method for making alkali resistant ultrapure colloidal silica. US Patent 20080170979 A1. (2008).

Zehner L.R., M. Pa, R.W. Lenton and N.J. Sewell, Process for the preparation of ethylene glycol. US Patent 4112245. (1978).

Zhang R., Xue M., Wang B., Ling L., Acetylene selective hydrogenation over different size of Pd-modified Cu cluster catalysts: Effects of Pd ensemble and cluster size on the selectivity and activity., Appl Surf Sci, 481, 421-432. (2019).

Zhu, X., Cho, H.-R., Pasupong, M., Regalbuto, J.R., Charge-enhanced dry impregnation: A simple way to improve the preparation of supported metal catalysts., ACS Catal., 3, 625-630.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔