|
1. Figueroa, J.D., T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. Int. J. Greenh. Gas Control, 2008. 2(1): p. 9-20. 2. Koros, W.J., Evolving beyond the thermal age of separation processes: Membranes can lead the way. AIChE J, 2004. 50(10): p. 2326-2334. 3. Robeson, L.M., The upper bound revisited. J. Membr. Sci, 2008. 320(1-2): p. 390-400. 4. Freeman, B.D., Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules, 1999. 32(2): p. 375-380. 5. Chung, T.-S., L.Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 2007. 32(4): p. 483-507. 6. Ghalei, B., K. Sakurai, Y. Kinoshita, K. Wakimoto, Ali P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, and E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy, 2017. 2(7). 7. Du, J. and H.-M. Cheng, The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys., 2012. 213(10-11): p. 1060-1077. 8. Bachman, J.E., Z.P. Smith, T. Li, T. Xu, and J.R. Long, Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat. Mater., 2016. 15(8): p. 845-9. 9. Zornoza, B., C. Tellez, J. Coronas, J. Gascon, and F. Kapteijn, Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Micropor. Mesopor. Mat., 2013. 166: p. 67-78. 10. Kim, S. and E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Micropor. Mesopor. Mat., 2008. 114(1-3): p. 129-136. 11. Zornoza, B., C. Téllez, and J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J. Membr. Sci, 2011. 368(1-2): p. 100-109. 12. Valero, M., B. Zornoza, C. Téllez, and J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Micropor. Mesopor. Mat., 2014. 192: p. 23-28. 13. Sorribas, S., B. Zornoza, C. Téllez, and J. Coronas, Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. J. Membr. Sci, 2014. 452: p. 184-192. 14. Kinoshita, Y., K. Wakimoto, A.H. Gibbons, A.P. Isfahani, H. Kusuda, E. Sivaniah, and B. Ghalei, Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci, 2017. 539: p. 178-186. 15. Kim, S., T.W. Pechar, and E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 2006. 192(1-3): p. 330-339. 16. Huang, G., A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, and B. Ghalei, Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Membr. Sci, 2018. 565: p. 370-379. 17. Banerjee, R., A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008. 319(5865): p. 939-43. 18. Fairen-Jimenez, D., S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons, and T. Duren, Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc., 2011. 133(23): p. 8900-2. 19. Nafisi, V. and M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci, 2014. 459: p. 244-255. 20. Ordoñez, M.J.C., K.J. Balkus, J.P. Ferraris, and I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci, 2010. 361(1-2): p. 28-37. 21. Song, Q., S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, and E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci., 2012. 5(8). 22. Mahdi, E.M. and J.-C. Tan, Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance. J. Membr. Sci, 2016. 498: p. 276-290. 23. Bushell, A.F., M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci, 2013. 427: p. 48-62. 24. Panda, T., K.M. Gupta, J. Jiang, and R. Banerjee, Enhancement of CO2uptake in iso-reticular Co based zeolitic imidazolate frameworks via metal replacement. CrystEngComm, 2014. 16(22): p. 4677-4680. 25. Panchariya, D.K., R.K. Rai, E. Anil Kumar, and S.K. Singh, Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega., 2018. 3(1): p. 167-175. 26. Li, T., J.E. Sullivan, and N.L. Rosi, Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc., 2013. 135(27): p. 9984-7. 27. Tang, J., R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, and Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc., 2015. 137(4): p. 1572-80. 28. Song, Z., F. Qiu, E.W. Zaia, Z. Wang, M. Kunz, J. Guo, M. Brady, B. Mi, and J.J. Urban, Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation. Nano Lett., 2017. 17(11): p. 6752-6758. 29. Sánchez-Laínez, J., A. Veiga, B. Zornoza, S.R.G. Balestra, S. Hamad, A.R. Ruiz-Salvador, S. Calero, C. Téllez, and J. Coronas, Tuning the separation properties of zeolitic imidazolate framework core–shell structures via post-synthetic modification. J. Mater. Chem. A, 2017. 5(48): p. 25601-25608. 30. Knebel, A., P. Wulfert-Holzmann, S. Friebe, J. Pavel, I. Strauss, A. Mundstock, F. Steinbach, and J. Caro, Hierarchical Nanostructures of Metal-Organic Frameworks Applied in Gas Separating ZIF-8-on-ZIF-67 Membranes. Chem. Eur. J., 2018. 24(22): p. 5728-5733. 31. Jayachandrababu, K.C., D.S. Sholl, and S. Nair, Structural and Mechanistic Differences in Mixed-Linker Zeolitic Imidazolate Framework Synthesis by Solvent Assisted Linker Exchange and de Novo Routes. J. Am. Chem. Soc., 2017. 139(16): p. 5906-5915. 32. Zhang, J., T. Zhang, K. Xiao, S. Cheng, G. Qian, Y. Wang, and Y. Feng, Novel and Facile Strategy for Controllable Synthesis of Multilayered Core–Shell Zeolitic Imidazolate Frameworks. Cryst. Growth Des, 2016. 16(11): p. 6494-6498. 33. Zhuang, J., L.Y. Chou, B.T. Sneed, Y. Cao, P. Hu, L. Feng, and C.K. Tsung, Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015. 11(41): p. 5551-5. 34. Jayaramulu, K., K.K. Datta, C. Rosler, M. Petr, M. Otyepka, R. Zboril, and R.A. Fischer, Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew. Chem. Int. Ed. Engl., 2016. 55(3): p. 1178-82. 35. Qian, X., F. Sun, J. Sun, H. Wu, F. Xiao, X. Wu, and G. Zhu, Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture. Nanoscale, 2017. 9(5): p. 2003-2008. 36. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A., 2006. 103(27): p. 10186-10191. 37. Phan, A., C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keeffe, and O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res., 2010. 43(1): p. 58-67. 38. Askari, M. and T.-S. Chung, Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci, 2013. 444: p. 173-183. 39. Sabetghadam, A., B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, and J. Gascon, Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Adv. Funct. Mater., 2016. 26(18): p. 3154-3163. 40. Cravillon, J., S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater., 2009. 21(8): p. 1410-1412. 41. Kida, K., M. Okita, K. Fujita, S. Tanaka, and Y. Miyake, Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013. 15(9). 42. Shao, J., Z. Wan, H. Liu, H. Zheng, T. Gao, M. Shen, Q. Qu, and H. Zheng, Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A, 2014. 2(31): p. 12194-12200. 43. Torad, N.L., M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, and Y. Yamauchi, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. (Camb.), 2013. 49(25): p. 2521-3. 44. Lin, R., B. Villacorta Hernandez, L. Ge, and Z. Zhu, Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem. A, 2018. 6(2): p. 293-312. 45. Deng, Y.H., J.T. Chen, C.H. Chang, K.S. Liao, K.L. Tung, W.E. Price, Y. Yamauchi, and K.C. Wu, A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance. Angew. Chem. Int. Ed. Engl., 2016. 55(41): p. 12793-6. 46. Liu, G., A. Cadiau, Y. Liu, K. Adil, V. Chernikova, I.D. Carja, Y. Belmabkhout, M. Karunakaran, O. Shekhah, C. Zhang, A.K. Itta, S. Yi, M. Eddaoudi, and W.J. Koros, Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2 S and CO2 from Natural Gas. Angew. Chem. Int. Ed. Engl., 2018. 57(45): p. 14811-14816. 47. Wu, X., W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang, and Z. Jiang, Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci, 2018. 548: p. 309-318. 48. Kaur, G., R.K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu, and S.K. Singh, Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J. Mater. Chem. A, 2016. 4(39): p. 14932-14938. 49. Nordin, N.A.H.M., A.F. Ismail, A. Mustafa, R.S. Murali, and T. Matsuura, The impact of ZIF-8 particle size and heat treatment on CO2/CH4separation using asymmetric mixed matrix membrane. RSC Adv., 2014. 4(94): p. 52530-52541. 50. Zhang, C., Y. Dai, J.R. Johnson, O. Karvan, and W.J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci, 2012. 389: p. 34-42. 51. Md. Nordin, N.A.H., A.F. Ismail, A. Mustafa, R.S. Murali, and T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Adv., 2015. 5(38): p. 30206-30215. 52. An, H., S. Park, H.T. Kwon, H.-K. Jeong, and J.S. Lee, A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes. J. Membr. Sci, 2017. 526: p. 367-376. 53. Lin, W.H. and T.S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes. J. Membr. Sci, 2001. 186(2): p. 183-193.
|