|
1. Whittingham, M.S., History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p. 1518-1534. 2. Henderson, W.A., Glyme− lithium salt phase behavior. The Journal of Physical Chemistry B, 2006. 110(26): p. 13177-13183. 3. Zhang, P., et al., Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today, 2017. 281: p.181-188. 4. Dong Tian tian et al- Research progress of polycarbonate-based solid polymer electrolytes. Acta Polymerica Sinica Jun., 2017. 5. Mao Shoji et al- Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J. Phys. D: Appl. Phys, 2018. 6. Y. W. Lin et al- Polymer Electrolytes for Lithium Ion Batteries, Industrial materials magazine, 2015. 7. Meyer, W.H., Polymer electrolytes for lithium-ion batteries. Advanced materials, 1998. 10(6): p. 439-448. 8. Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998). 9. Zhang, J., Sun, B., Huang, X., et al.: Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4, 6007 (2014). 10. Li, X., Qian, K., He, Y.B., et al.: A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J. Mater. Chem. A 5, 18888–18895 (2017).
11. Zeng, X.X., Yin, Y.X., Shi, Y., et al.: Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem 4(2), 298–307 (2018). 12. Zhong, X., Tang, J., Cao, L., et al.: Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solidstate supercapacitors. Electrochim. Acta 244, 112–118 (2017). 13. Díaz, M., Ortiz, A., Ortiz, I.: Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469,379–396 (2014). 14. Yang, G., Oh, H., Chanthad, C., et al.: Dumbbell-shaped octasilsesquioxanes functionalized with ionic liquids as hybrid electrolytes for lithium metal batteries. Chem. Mater. 29, 9275–9283 (2017). 15. Wang, X., Zhu, H., Girard, G.M.A., et al.: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J. Mater. Chem. A 5, 23844–23852 (2017). 16. Zhou, D., Liu, R., Zhang, J., et al.: In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for highsafety lithium-ion and sodium-ion batteries. Nano Energy 33,45–54 (2017). 17. Wang, S., Shi, Q.X., Ye, Y.S., et al.: Constructing desirable ionconducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy 33, 110–123 (2017). 18. Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T., et al.: Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287–2311 (1996). 19. Devaux, D., Gle, D., Phan, T.N.T., et al.: Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 27, 4682–4692 (2015). 20. Young, W.S., Kuan, W.F., Epps, T.H., et al.: Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys. 52, 1–16 (2014).
21. Chintapalli, M., Chen, X.C., Thelen, J.L., et al.: Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 47, 5424–5431 (2014). 22. Fu, G., Kyu, T.: Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017). 23. Zheng, Z., Gao, X., Luo, Y., et al.: Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity. Macromolecules 49, 2179–2188 (2016). 24. Sadoway, D.R.: Block and graft copolymer, electrolytes for highperformance, solid-state, lithium batteries. J. Power Sources 129,1–3 (2004). 25. Kang, Y.K., Cheong, K., Noh, K.A., et al.: A study of crosslinked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties.J. Power Sources 119, 432–437 (2003). 26. Le Nest, J.F., Callens, S., Gandini, A., et al.: A new polymer network for ionic conduction. Electrochim. Acta 37, 1585–1588(1992). 27. Armand, M.: Polymer solid electrolytes—an overview. Solid State Ionics 9–10, 745–754 (1983). 28. Ben Youcef, H., Garcia-Calvo, O., Lago, N., et al.: Crosslinked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016). 29. Alloin, F., Sanchez, J.Y., Armand, M.: Electrochemical-behavior of lithium electrolytes based on new polyether networks. J. Electrochem. Soc. 141, 1915–1920 (1994). 30. Nishimoto, A., Agehara, K., Furuya, N., et al.: High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999). 31. Snyder, J.F., Carter, R.H., Wetzel, E.D.: Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater. 19, 3793–3801 (2007). 32. Laik, B., Legrand, L., Chausse, A., et al.: Ion-ion interactions and lithium stability in a crosslinked PEO containing lithium salts. Electrochim. Acta 44, 773–780 (1998). 33. Khurana, R., Schaefer, J.L., Archer, L.A., et al.: Suppression of lithium dendrite growth using cross-linked polyethylene/ poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395– 7402 (2014). 34. Klempner, D.: Interpenetrating polymer networks. Angew. Chem. Int. Ed. 17, 97–106 (1978). 35. Sperling, L.H.: Interpenetrating polymer networks. In: Utracki,L.A. (ed.) Polymer Blends Handbook. Interpenetrating Polymer Networks, vol. 1, pp. 417–447. Springer, Dordrecht (2002). 36. Zeng, X.X., Yin, Y.X., Li, N.W., et al.: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc.138, 15825–15828 (2016). 37. Duan, H., Yin, Y.X., Zeng, X.X., et al.: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 10, 85–91 (2018). 38. Jacob, M.M.E., Prabaharan, S.R.S., Radhakrishna, S.: Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion. 104, 267–276 (1997). 39. Xi, J.Y., Qiu, X.P., Li, J., et al.: PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sources 157, 501–506 (2006). 40. Tao, C., Gao, M.H., Yin, B.H., et al.: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 257, 31–39 (2017). 41. Zhang, H., Li, C., Piszcz, M., et al.: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017). 42. Piszcz, M., Garcia-Calvo, O., Oteo, U., et al.: New single ion conducting blend based on PEO and PA-LiTFSI. Electrochim. Acta 255, 48–54 (2017). 43. Meziane, R., Bonnet, J.P., Courty, M., et al.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011). 44. Ma, Q., Zhang, H., Zhou, C., et al.: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016). 45. Scrosati, B., Vincent, C.A.: Polymer electrolytes: the key to lithium polymer batteries. MRS Bull. 25, 28–30 (2000). 46. Weston, J.E., Steele, B.C.H.: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982). 47. Liu, Y., Lee, J.Y., Hong, L.: Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J. Appl.Polym. Sci. 89, 2815–2822 (2003). 48. Lin, D.C., Liu, W., Liu, Y.Y., et al.: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(thylene oxide). Nano Lett. 16, 459–465 (2016). 49. Manuel Stephan, A., Nahm, K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006). 50. Kumar, B., Rodrigues, S.J.: Poly(ethylene oxide)-based composite electrolytes crystalline reversible arrow amorphous transition. J. Electrochem. Soc. 148, A1336–A1340 (2001).
51. Kumar, B., Scanlon, L.G., Spry, R.J.: On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J. Power Sources 96, 337–342 (2001). 52. Kumar, B., Scanlon, L.G.: Polymer-ceramic composite electrolytes. J. Power Sources 52, 261–268 (1994). 53. Zhang, J.X., Zhao, N., Zhang, M., et al.: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). 54. Yamada, H., Bhattacharyya, A.J., Maier, J.: Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater. 16, 525–530 (2006). 55. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). 56. Maier, J.: Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995). 57. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017). 58. Zhai, H., Xu, P., Ning, M., et al.: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017). 59. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater.6, 183–191 (2007). 60. Dean, C.R., Young, A.F., Meric, I., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
61. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). 62. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., et al.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009). 63. Butler, S.Z., Hollen, S.M., Cao, L., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). 64. Lim, M.-Y., Kim, H.J., Baek, S.J., et al.: Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 77, 366–378 (2014). 65. Shim, J., Kim, D.-G., Kim, H.J., et al.: Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2, 13873–13883 (2014). 66. Yuan, M., Erdman, J., Tang, C., et al.: High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4, 59637–59642 (2014). 67. Zekoll, S., Marriner-Edwards, C., Hekselman, A.K.O., et al.: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). 68. Croce, F., Appetecchi, G.B., Persi, L., et al.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). 69. Nan, C.W., Fan, L.Z., Lin, Y.H., et al.: Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 266104 (2003).
70. Zhao, C.Z., Zhang, X.Q., Cheng, X.B., et al.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A. 114, 11069–11074 (2017). 71. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017). 72. Zheng, J., Tang, M., Hu, Y.Y.: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). 73. Li, Y., Xu, B., Xu, H., et al.: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017). 74. Fu, K., Gong, Y., Li, Y., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). 75. Tu, Z., Kambe, Y., Lu, Y., et al.: Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014). 76. Zhou, W., Wang, S., Li, Y., et al.: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016). 77. Shuang‑Jie Tan et al- Recent Advancements in Polymer‑Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews. May 2018. 78. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
79. Zhu, Y., X. He, and Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li- ion batteries. Journal of Materials Chemistry A, 2016. 4(9): p. 3253-3266. 80. Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052. 81. Murugan, R., V. Thangadurai, and W. Weppner, Schnelle lithiumionenleitung in granatartigem Li7La3Zr2O12. Angewandte Chemie, 2007. 119(41): p. 7925-7928. 82. Huang, M., et al., Effect of sintering temperature on structure and ionic conductivity of Li7− xLa3Zr2O12−0.5x (x= 0.5~ 0.7) ceramics. Solid State Ionics, 2011. 204: p. 41-45. 83. Li, Y., et al., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 2014. 248: p. 642-646. 84. Düvel, A., et al., Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12crystallizing with cubic symmetry. The Journal of Physical Chemistry C, 2012. 116(29): p. 15192-15202. 85. Kotobuki, M., et al., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2011. 196(18): p. 7750-7754. 86. Rangasamy, E., J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012. 206: p. 28-32. 87. Cao Yang et al., Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12 (x=0.25) solid electrolytes. Chin. Phys. B Vol. 22, No. 7 (2013).
88. Wu, J.-F., et al., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces, 2017. 9(2): p. 1542-1552. 89. Maoyi Yi et al., High Li-ion conductivity of Al-free Li7-3xGaxLa3Zr2O12 solid electrolyte prepared by liquid-phase sintering. Journal of Solid State Electrochemistry. February 2019. 90. Ahn, C.-W., et al., Electrochemical properties of Li7La3Zr2O12-based solid state battery. Journal of Power Sources, 2014. 272: p. 554-558. 91. Li, Y., et al., Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angewandte Chemie International Edition, 2017. 56(3): p. 753-756. 92. Hyun Woo Kim et al., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries, Journal of Materials Chemistry A-2016. 93. Shuang‑Jie Tan et al., Recent Advancements in Polymer‑Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews. May 2018. 94. Choi, J.-H., et al., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources,2015. 274: p. 458-463. 95. Wenqiang Zhang et al., A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45 (2018) 413–419. 96. Jae-Yeong Park et al., Effect of solvated ionic liquids on the ion conducting property of composite membranes for lithium ion batteries. Res Chem Intermed. May 2018 97. Kun (Kelvin) et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advance. April 2017. 98. Gulin Vardar,William J. Bowman, Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode. Chem. Mater. 2018. 99. 1eng, J., M. Tang, and Y.Y. Hu, Lithium Ion Pathway within Li7La3Zr2O12- Polyethylene Oxide Composite Electrolytes. Angewandte Chemie, 2016.128(40): p. 12726-12730. 100. Yun-Chae Jung et al., Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. Journal of Power Sources 293 (2015) 675-683. 101. Hyun Woo Kim et al, Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A. August 2016. 102. Hanyu Huo, Ning Zhao, Jiyang Sun, Fuming Du, Yiqiu Li, Xiangxin Guo, Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources 372 (2017) 1–7,2017. 103. Y.F. Liang, S.J. Deng, Y. Xia, X.L. Wang, X.H. Xia, J.B. Wu, C.D. Gu, J.P. Tu. A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Accepted Manuscript, 2018. 104. Fei Chen, All-Solid-State Lithium Battery Fitted with Polymer Electrolyte Enhanced by Solid Plasticizer and Conductive Ceramic Filler. Journal of The Electrochemical Society, 165 (14) A3558-A3565 (2018). 105. Da Hye Kim, Min Young Kim, Seung Hoon Yang, Fabrication and Electrochemical Characteristics of NCM-Based All-Solid Lithium Batteries using Nano-grade Garnet Al-LLZO Powder. Accepted Manuscript, 2019. 106 Yali Luo, Xueyan Li, Electrochemical Properties and Structural Stability of Ga- and Y- co-doping in Li7La3Zr2O12 Ceramic Electrolytes for Lithium-ion Batteries. Accepted Manuscript, 2019.
107. Maoyi Yi, Tao Liu, Xiangnan Wang, Jingyun Li, High densification and Li-ion conductivity of Al-free Li7-xLa3Zr2-xTaxO12 garnet solid electrolyte prepared by using ultrafine powders. Accepted Manuscript, 2019. 108. Yang Li, Wei Zhang, Qianqian Dou, Ka Wai Wong and Ka Ming Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A,2019. 109. Da Hye Kim, Min Young Kim, Fabrication and Electrochemical Characteristics of NCM-Based All-Solid Lithium Batteries using Nano-grade Garnet Al-LLZO Powder. Accepted Manuscript, 2019. 110. Zeya Huang, Wanying Pang, A dopamine modified Li6.4La3Zr1.4Ta0.6O12 /PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A,2019.
|