跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許偉倫
研究生(外文):Wei-Lun Hsu
論文名稱:利用旋轉塗佈法製備固態電解質應用於鋰離子電池
論文名稱(外文):Preparation of Solid Electrolyte Li7La3Zr2O12 by Spin Coating Method for Lithium-Ion Batteries
指導教授:李岱洲
指導教授(外文):Tai-Chou Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:159
中文關鍵詞:固態電解質鋰電池正極材料
外文關鍵詞:solid electrolytesLi-ion batteriescathode materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗第一部分,使用旋轉塗佈法製備固態電解質,此方法的優點為控制其薄膜的厚度、增加Li+ 的擴散通道,使Li+ 更加地容易傳送。固態電解質是由PEO、LiTFSI、Ga-doped LLZO混合而成的,而我們嘗試尋找旋轉塗佈法的最佳參數: 轉速1000 rpm、時間60秒、每滴溶劑150 μL、層數15層。而隨著固態電解質的濃度增加,可以有效地抑制電壓的抖動,故電解質的最佳比例則是PEO: LiTFSI : LLZO = 1:1:2。
我們沿用第一部分的最佳參數,第二部分則是比較五種LLZO製備固態電解質應用於鋰離子電池,而與其它種類的LLZO相比,Li6.25Ga0.25La3Zr2O12有最好的電化學性質,其0.1C下電容值約有120 mAh/g,庫倫效率約有97%,且發現粒徑大小會部分影響電化學性質,因為在固態電解質Li+ 傾向於在 LLZO 相中傳遞,所以我們降低固態電解質中的粒徑大小,便能夠使Li+ 更加容易地穿透,進而造成電化學性質提高。我們選擇填充物Al2O3取代LLZO,但卻得到很差的電化學性質,這邊推測為高分子主鏈運動不易,導致導電度不佳,故結過顯示填充物無法取代LLZO,固態電解質是必要的存在。
實驗第三部分,我們加入離子液體在固態電解質和鋰金屬之間,藉此降低其界面阻抗,並選擇三種不同摻雜的LLZO比較其電化學性質,而Li6.25Ga0.25La3Zr2O12加入離子液體1M LiTFSI/PMPTFSI有最好的電化學性質,其0.1C下電容值約有148 mAh/g,庫倫效率約有97%。以0.5C下作200圈循環壽命測試,維持率高達96% (137.48/143.21 mAh/g, 200th/1st )。
A single-phase Li7La3Zr2O12 (LLZO) solid electrolyte is synthesized using a solid-state reaction method. The influences of doping elements (Ga, Ta, and Mg) on the properties of LLZO are investigated. In addition, a hybrid electrolyte, composed of Ga-doped (or Ta-doped) LLZO, LiTFSI, and poly(ethylene oxide) was prepared, using the spin coating method. The LLZO/LiTFSI/PEO ratio of slurry and number of layers were changed to compare their electrochemical properties. As compared to LLZO pellet electrolyte, the hybrid electrolyte shows a higher ionic conductivity and a better charge-discharge performance in Li/LiFePO4 cells.
We compare different kinds of LLZO and find out that Li6.25Ga0.25La3Zr2O12 has the best electrochemical properties. The charge is about 120 mAh/g and coulombic efficiency is also 97%. It was found that the particle size will affect the electrochemical performance. The Li+ ion tends to pass through the LLZO phase in the solid electrolyte, by reducing the particle size Li+ ion can penetrate more easily.
The huge interface impedance still possesses a great challenge toward a better performance. We add the ionic liquid between the solid electrolyte and lithium metal to decrease the interface impedance. Li6.25Ga0.25La3Zr2O12-1M LiTFSI/PMPTFSI demonstrates good charge and discharge performance.The charge reaches up to 148 mAh/g and coulombic efficiency is also 97 %. The cycle retention at 0.5C is about 96% during the 200 cycles.
摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 固態電解質 4
2-1-1傳導機制 4
2-1-2混合型的固態電解質 6
2-1-2-1 Polymer/Liquid Hybrid Electrolytes with Organic Liquids 6
2-1-2-2 Polymer/Liquid Hybrid Electrolytes with Ionic Liquids 9
2-1-2-3 Polymer/Polymer Coordinating Electrolytes 11
2-1-2-4 Polymer/Inorganic Composite Electrolytes 16
2-1-3固態陶瓷電解質結構 28
2-2 Li7La3Zr2O12 的發展與應用 30
2-2-1 Li7La3Zr2O12 分析 30
2-2-2 Li7La3Zr2O12 不同元素摻雜 34
2-3 Li7La3Zr2O12 應用於鋰電池 41
2-3-1錠狀(pellet)固態電解質 41
2-3-2混合的固態電解質(hybrid) 45
第三章 實驗方法與步驟 60
3-1 實驗藥品及材料 60
3-2 電池製備 63
3-2-1 工作電極塗佈 63
3-2-2 固態電解質薄膜製備 63
3-2-3 電解液的配置 64
3-2-4鈕扣型電池製備 64
3-3材料分析與鑑定 65
3-3-1 X光繞射分析 (X-ray diffraction,XRD) 65
3-3-2場發式掃描電子顯微鏡 (Field Emission Gun Scanning Electron Microscope, FEI, Inspect F50) 65
3-3-3 動態光散射粒徑分析儀 (Dynamic Light Scattering) 65
3-3-4線性掃描伏安法 (Linear scan voltammetry) 65
3-3-5連續循環充放電測試 (Charge and Discharge Test) 66
3-3-6交流阻抗 (electrochemical impedance spectroscopy, EIS) 66
第四章 結果與討論 67
4-1旋轉塗佈法(spin coating)的最佳參數 67
4-1-1 LiPF6-EC/DEC的基本性質 67
4-1-2 Spin coating 電解質的比例 72
4-2摻雜不同元素Li7La3Zr2O12的比較 80
4-2-1 摻雜不同元素Li7La3Zr2O12的基本性質 80
4-2-2 摻雜不同元素Li7La3Zr2O12的電化學性質 84
4-3固態電解質加入離子液體對電池性能的影響 99
4-3-1離子液體的基本性質 99
4-3-2 Li7La3Zr2O12 加入離子液體的電池性能 107
第五章 結論 125
第六章 附錄 126
第七章 參考文獻 129
1. Whittingham, M.S., History, evolution, and future status of energy storage. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p. 1518-1534.
2. Henderson, W.A., Glyme− lithium salt phase behavior. The Journal of Physical Chemistry B, 2006. 110(26): p. 13177-13183.
3. Zhang, P., et al., Synthesis of core-shell structured CdS@CeO 2 and CdS@TiO 2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Today, 2017. 281: p.181-188.
4. Dong Tian tian et al- Research progress of polycarbonate-based solid polymer electrolytes. Acta Polymerica Sinica Jun., 2017.
5. Mao Shoji et al- Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J. Phys. D: Appl. Phys, 2018.
6. Y. W. Lin et al- Polymer Electrolytes for Lithium Ion Batteries, Industrial materials magazine, 2015.
7. Meyer, W.H., Polymer electrolytes for lithium-ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
8. Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).
9. Zhang, J., Sun, B., Huang, X., et al.: Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4, 6007 (2014).
10. Li, X., Qian, K., He, Y.B., et al.: A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J. Mater. Chem. A 5, 18888–18895 (2017).

11. Zeng, X.X., Yin, Y.X., Shi, Y., et al.: Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem 4(2), 298–307 (2018).
12. Zhong, X., Tang, J., Cao, L., et al.: Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solidstate supercapacitors. Electrochim. Acta 244, 112–118 (2017).
13. Díaz, M., Ortiz, A., Ortiz, I.: Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469,379–396 (2014).
14. Yang, G., Oh, H., Chanthad, C., et al.: Dumbbell-shaped octasilsesquioxanes functionalized with ionic liquids as hybrid electrolytes for lithium metal batteries. Chem. Mater. 29, 9275–9283 (2017).
15. Wang, X., Zhu, H., Girard, G.M.A., et al.: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J. Mater. Chem. A 5, 23844–23852 (2017).
16. Zhou, D., Liu, R., Zhang, J., et al.: In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for highsafety lithium-ion and sodium-ion batteries. Nano Energy 33,45–54 (2017).
17. Wang, S., Shi, Q.X., Ye, Y.S., et al.: Constructing desirable ionconducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy 33, 110–123 (2017).
18. Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T., et al.: Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287–2311 (1996).
19. Devaux, D., Gle, D., Phan, T.N.T., et al.: Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 27, 4682–4692 (2015).
20. Young, W.S., Kuan, W.F., Epps, T.H., et al.: Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys. 52, 1–16 (2014).

21. Chintapalli, M., Chen, X.C., Thelen, J.L., et al.: Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 47, 5424–5431 (2014).
22. Fu, G., Kyu, T.: Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017).
23. Zheng, Z., Gao, X., Luo, Y., et al.: Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity. Macromolecules 49, 2179–2188 (2016).
24. Sadoway, D.R.: Block and graft copolymer, electrolytes for highperformance, solid-state, lithium batteries. J. Power Sources 129,1–3 (2004).
25. Kang, Y.K., Cheong, K., Noh, K.A., et al.: A study of crosslinked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties.J. Power Sources 119, 432–437 (2003).
26. Le Nest, J.F., Callens, S., Gandini, A., et al.: A new polymer network for ionic conduction. Electrochim. Acta 37, 1585–1588(1992).
27. Armand, M.: Polymer solid electrolytes—an overview. Solid State Ionics 9–10, 745–754 (1983).
28. Ben Youcef, H., Garcia-Calvo, O., Lago, N., et al.: Crosslinked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016).
29. Alloin, F., Sanchez, J.Y., Armand, M.: Electrochemical-behavior of lithium electrolytes based on new polyether networks. J. Electrochem. Soc. 141, 1915–1920 (1994).
30. Nishimoto, A., Agehara, K., Furuya, N., et al.: High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999).
31. Snyder, J.F., Carter, R.H., Wetzel, E.D.: Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater. 19, 3793–3801 (2007).
32. Laik, B., Legrand, L., Chausse, A., et al.: Ion-ion interactions and lithium stability in a crosslinked PEO containing lithium salts. Electrochim. Acta 44, 773–780 (1998).
33. Khurana, R., Schaefer, J.L., Archer, L.A., et al.: Suppression of lithium dendrite growth using cross-linked polyethylene/ poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395– 7402 (2014).
34. Klempner, D.: Interpenetrating polymer networks. Angew. Chem. Int. Ed. 17, 97–106 (1978).
35. Sperling, L.H.: Interpenetrating polymer networks. In: Utracki,L.A. (ed.) Polymer Blends Handbook. Interpenetrating Polymer Networks, vol. 1, pp. 417–447. Springer, Dordrecht (2002).
36. Zeng, X.X., Yin, Y.X., Li, N.W., et al.: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc.138, 15825–15828 (2016).
37. Duan, H., Yin, Y.X., Zeng, X.X., et al.: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 10, 85–91 (2018).
38. Jacob, M.M.E., Prabaharan, S.R.S., Radhakrishna, S.: Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion. 104, 267–276 (1997).
39. Xi, J.Y., Qiu, X.P., Li, J., et al.: PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sources 157, 501–506 (2006).
40. Tao, C., Gao, M.H., Yin, B.H., et al.: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 257, 31–39 (2017).
41. Zhang, H., Li, C., Piszcz, M., et al.: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017).
42. Piszcz, M., Garcia-Calvo, O., Oteo, U., et al.: New single ion conducting blend based on PEO and PA-LiTFSI. Electrochim. Acta 255, 48–54 (2017).
43. Meziane, R., Bonnet, J.P., Courty, M., et al.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011).
44. Ma, Q., Zhang, H., Zhou, C., et al.: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).
45. Scrosati, B., Vincent, C.A.: Polymer electrolytes: the key to lithium polymer batteries. MRS Bull. 25, 28–30 (2000).
46. Weston, J.E., Steele, B.C.H.: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982).
47. Liu, Y., Lee, J.Y., Hong, L.: Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J. Appl.Polym. Sci. 89, 2815–2822 (2003).
48. Lin, D.C., Liu, W., Liu, Y.Y., et al.: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(thylene oxide). Nano Lett. 16, 459–465 (2016).
49. Manuel Stephan, A., Nahm, K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006).
50. Kumar, B., Rodrigues, S.J.: Poly(ethylene oxide)-based composite electrolytes crystalline reversible arrow amorphous transition. J. Electrochem. Soc. 148, A1336–A1340 (2001).


51. Kumar, B., Scanlon, L.G., Spry, R.J.: On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J. Power Sources 96, 337–342 (2001).
52. Kumar, B., Scanlon, L.G.: Polymer-ceramic composite electrolytes. J. Power Sources 52, 261–268 (1994).
53. Zhang, J.X., Zhao, N., Zhang, M., et al.: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016).
54. Yamada, H., Bhattacharyya, A.J., Maier, J.: Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater. 16, 525–530 (2006).
55. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).
56. Maier, J.: Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995).
57. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017).
58. Zhai, H., Xu, P., Ning, M., et al.: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017).
59. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater.6, 183–191 (2007).
60. Dean, C.R., Young, A.F., Meric, I., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).


61. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
62. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., et al.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
63. Butler, S.Z., Hollen, S.M., Cao, L., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).
64. Lim, M.-Y., Kim, H.J., Baek, S.J., et al.: Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 77, 366–378 (2014).
65. Shim, J., Kim, D.-G., Kim, H.J., et al.: Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2, 13873–13883 (2014).
66. Yuan, M., Erdman, J., Tang, C., et al.: High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4, 59637–59642 (2014).
67. Zekoll, S., Marriner-Edwards, C., Hekselman, A.K.O., et al.: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018).
68. Croce, F., Appetecchi, G.B., Persi, L., et al.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).
69. Nan, C.W., Fan, L.Z., Lin, Y.H., et al.: Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 266104 (2003).

70. Zhao, C.Z., Zhang, X.Q., Cheng, X.B., et al.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A. 114, 11069–11074 (2017).
71. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017).
72. Zheng, J., Tang, M., Hu, Y.Y.: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).
73. Li, Y., Xu, B., Xu, H., et al.: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017).
74. Fu, K., Gong, Y., Li, Y., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).
75. Tu, Z., Kambe, Y., Lu, Y., et al.: Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014).
76. Zhou, W., Wang, S., Li, Y., et al.: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).
77. Shuang‑Jie Tan et al- Recent Advancements in Polymer‑Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews. May 2018.
78. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.

79. Zhu, Y., X. He, and Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li- ion batteries. Journal of Materials Chemistry A, 2016. 4(9): p. 3253-3266.
80. Awaka, J., et al., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052.
81. Murugan, R., V. Thangadurai, and W. Weppner, Schnelle lithiumionenleitung in granatartigem Li7La3Zr2O12. Angewandte Chemie, 2007. 119(41): p. 7925-7928.
82. Huang, M., et al., Effect of sintering temperature on structure and ionic conductivity of Li7− xLa3Zr2O12−0.5x (x= 0.5~ 0.7) ceramics. Solid State Ionics, 2011. 204: p. 41-45.
83. Li, Y., et al., Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power Sources, 2014. 248: p. 642-646.
84. Düvel, A., et al., Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12crystallizing with cubic symmetry. The Journal of Physical Chemistry C, 2012. 116(29): p. 15192-15202.
85. Kotobuki, M., et al., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2011. 196(18): p. 7750-7754.
86. Rangasamy, E., J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012. 206: p. 28-32.
87. Cao Yang et al., Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12 (x=0.25) solid electrolytes. Chin. Phys. B Vol. 22, No. 7 (2013).

88. Wu, J.-F., et al., Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS applied materials & interfaces, 2017. 9(2): p. 1542-1552.
89. Maoyi Yi et al., High Li-ion conductivity of Al-free Li7-3xGaxLa3Zr2O12 solid electrolyte prepared by liquid-phase sintering. Journal of Solid State Electrochemistry. February 2019.
90. Ahn, C.-W., et al., Electrochemical properties of Li7La3Zr2O12-based solid state battery. Journal of Power Sources, 2014. 272: p. 554-558.
91. Li, Y., et al., Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. Angewandte Chemie International Edition, 2017. 56(3): p. 753-756.
92. Hyun Woo Kim et al., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries, Journal of Materials Chemistry A-2016.
93. Shuang‑Jie Tan et al., Recent Advancements in Polymer‑Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews. May 2018.
94. Choi, J.-H., et al., Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources,2015. 274: p. 458-463.
95. Wenqiang Zhang et al., A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45 (2018) 413–419.
96. Jae-Yeong Park et al., Effect of solvated ionic liquids on the ion conducting property of composite membranes for lithium ion batteries. Res Chem Intermed. May 2018
97. Kun (Kelvin) et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advance. April 2017.
98. Gulin Vardar,William J. Bowman, Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode. Chem. Mater. 2018.
99. 1eng, J., M. Tang, and Y.Y. Hu, Lithium Ion Pathway within Li7La3Zr2O12- Polyethylene Oxide Composite Electrolytes. Angewandte Chemie, 2016.128(40): p. 12726-12730.
100. Yun-Chae Jung et al., Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. Journal of Power Sources 293 (2015) 675-683.
101. Hyun Woo Kim et al, Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A. August 2016.
102. Hanyu Huo, Ning Zhao, Jiyang Sun, Fuming Du, Yiqiu Li, Xiangxin Guo, Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources 372 (2017) 1–7,2017.
103. Y.F. Liang, S.J. Deng, Y. Xia, X.L. Wang, X.H. Xia, J.B. Wu, C.D. Gu, J.P. Tu. A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Accepted Manuscript, 2018.
104. Fei Chen, All-Solid-State Lithium Battery Fitted with Polymer Electrolyte Enhanced by Solid Plasticizer and Conductive Ceramic Filler. Journal of The Electrochemical Society, 165 (14) A3558-A3565 (2018).
105. Da Hye Kim, Min Young Kim, Seung Hoon Yang, Fabrication and Electrochemical Characteristics of NCM-Based All-Solid Lithium Batteries using Nano-grade Garnet Al-LLZO Powder. Accepted Manuscript, 2019.
106 Yali Luo, Xueyan Li, Electrochemical Properties and Structural Stability of Ga- and Y- co-doping in Li7La3Zr2O12 Ceramic Electrolytes for Lithium-ion Batteries. Accepted Manuscript, 2019.

107. Maoyi Yi, Tao Liu, Xiangnan Wang, Jingyun Li, High densification and Li-ion conductivity of Al-free Li7-xLa3Zr2-xTaxO12 garnet solid electrolyte prepared by using ultrafine powders. Accepted Manuscript, 2019.
108. Yang Li, Wei Zhang, Qianqian Dou, Ka Wai Wong and Ka Ming Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A,2019.
109. Da Hye Kim, Min Young Kim, Fabrication and Electrochemical Characteristics of NCM-Based All-Solid Lithium Batteries using Nano-grade Garnet Al-LLZO Powder. Accepted Manuscript, 2019.
110. Zeya Huang, Wanying Pang, A dopamine modified Li6.4La3Zr1.4Ta0.6O12 /PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A,2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊