跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宜慶
研究生(外文):Yi-Ching Chen
論文名稱:鎳矽化物/矽單晶異質奈米錐陣列之製備及其近紅外光感測特性研究
指導教授:鄭紹良
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:奈米球微影金屬催化蝕刻奈米錐鎳矽化物近紅外光偵測器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們在矽晶基材上利用奈米球微影技術結合金屬催化蝕刻法以一步驟蝕刻來製備大面積之規則矽單晶奈米錐陣列,並將製程技術發展,成功於基材兩面製備出雙面型矽單晶奈米錐結構試片。接著蒸鍍鎳金屬薄膜於奈米錐側壁上,透過熱退火處理使鎳金屬與矽基材反應生成鎳矽化物,並藉由相鑑定得知為二鎳化矽結構。透過光譜儀量測上述結構可發現,鎳金屬可大幅改善矽基材近紅外光波段吸收性,且經由退火製程形成鎳矽化物後又可再次提升,而雙面型奈米錐試片的背部結構會增加整體光學穿透率,若同時於正面製備成異質結構,單面型奈米錐試片在紅外光波段會具有較佳的吸收率,加入背電極鋁後於1200-1600 nm波長範圍平均吸收率可達95%。進一步量測結構的光感測性質發現,在940 nm近紅外光源照射下,鎳/矽奈米錐/矽製備成鎳矽化物/矽奈米錐/矽結構可提升其響應光電流,而鎳矽化物/矽奈米錐/矽/矽奈米錐結構反應出較低的暗電流,但光電流也同時下降。對最高響應光電流的鎳矽化物/矽奈米錐/矽結構做響應度與響應時間量測,該元件表現出不錯的響應速度,且各結構元件均可於零偏壓下運作,實現了自驅動光感測的特性。
In this study, we based on the nanosphere lithography and one-step Au-assisted chemical etching process to fabricate single-sidde and double-sided vertically-aligned Si nanocone arrays on p-type (001) Si substrates. In order to enhance the near-infrared absorption, Ni thin film was deposited on the sidewall of the Si nanocone and followed by silicide process. The TEM and SAED analysis indicated that the formation of silicide phase is single-crystalline NiSi_2. UV-Vis-IR spectroscopic measurements showed that Ni thin film can dramatically improve the near-infrared absorption. If Ni thin film become to NiSi_2 thin film by silicide process, it showed the higher absorptance than Ni thin film, which have promising applications in near-infrared photodetector. The produced Ni or NiSi_2/Si nanocone heterostructure exhibited rectification property by Schottky contact and generated photocurrent under 940 nm illumination at zero bias voltage. The obtained results presented a novel structure of Si-base near-infrared photodetector. It has high light trapping ability, fast response and operation in zero bias. This work offer a relative cheap and fast process compared with other Si-base near-infrared photodetectors.
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽基表面粗糙化結構 2
1-2-1 矽單晶表面粗糙化結構 2
1-2-2 雙面矽單晶奈米粗糙化結構 4
1-2-3 金屬矽化物奈米粗糙化結構 4
1-3 矽晶紅外光吸收機制 5
1-3-1 缺陷間接吸收 5
1-3-2 雙光子吸收 6
1-3-3 內部光發射吸收 7
1-4 矽基蕭特基二極體 9
1-4-1 金屬與半導體接觸理論 9
1-4-2 矽基蕭特基紅外光偵測器 11
1-5 研究動機與目標 12
第二章 實驗步驟及儀器設備 14
2-1 實驗步驟 14
2-1-1 矽晶基材使用前處理 14
2-1-2 奈米球陣列模板製備 14
2-1-3 奈米球微影術結合金屬催化蝕刻法製備矽單晶奈米錐陣列 15
2-1-4 鎳矽化物奈米錐陣列製備 15
2-1-5 蕭特基光偵測器製備 16
2-2 儀器設備 16
2-2-1 掃描式電子顯微鏡 16
2-2-2 穿透式電子顯微鏡 17
2-2-3 影像式水滴接觸角測量儀 17
2-2-4 可見光-近紅外光光譜儀 18
2-2-5 近紅外光偵測系統 18
第三章 結果與討論 19
3-1 大面積週期性排列之矽單晶奈米錐陣列 19
3-1-1 聚苯乙烯奈米球模板製備 19
3-1-2 週期性排列之準直矽單晶奈米錐陣列結構製備 20
3-1-3 雙面週期性排列之準直矽單晶奈米錐陣列結構製備 21
3-1-4 單面與雙面矽單晶奈米錐陣列之光譜量測與分析 22
3-2 鎳矽化物/矽單晶奈米錐陣列 24
3-2-1 鎳/矽單晶奈米錐陣列結構製備 24
3-2-2 鎳矽化物/矽單晶奈米錐陣列結構製備 25
3-2-3 鎳與鎳矽化物/矽單晶奈米錐陣列之光譜量測與分析 27
3-3 矽基蕭特基光偵測器近紅外光感測特性量測與探討 29
3-2-1 蕭特基光偵測器之製備與電性量測 29
3-2-2 蕭特基光偵測器近紅外光感測響應度與響應時間 32
第四章 結論與未來展望 34
參考文獻 35
表目錄 43
圖目錄 45
[1] G. Wang, Z. Li, M. Li, J. Liao, C. Chen, S. Lv, and C. Shi, “Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays,” Phys. Chem. Chem. Phys. 17 (2015) 31822-31829.
[2] H. C. Chang, H. J. Tsai, W. Y. Lin, Y. C. Chu, and W. K. Hsu, “Hexagonal boron nitride coated carbon nanotubes: interlayer polarization improved field emission,” ACS Appl. Mater. Interfaces 7 (2015) 14456-14462.
[3] C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8 (2014) 95-103.
[4] X. Zhang, Y. Liu, S.-T. Lee, S. Yang, and Z. Kang, “Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting,” Energy Environ. Sci. 7 (2014) 1409.
[5] M. Grajower, U. Levy, and J. B. Khurgin, “The role of surface roughness in plasmonically assisted internal photoemission schottky photodetectors,” ACS Photonics 5 (2018) 4030-4036.
[6] B. D. Boruah, S. N. Majji, and A. Misra, “Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors,” Nanoscale 9 (2017) 4536-4543.
[7] P. S. Shewale and Y. S. Yu, “Structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods: Effect of growth time,” J. Alloys Compd. 654 (2016) 79-86.
[8] R. Dewan, S. Shrestha, V. Jovanov, J. Hüpkes, K. Bittkau, and D. Knipp, “Random versus periodic: Determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures,” Sol. Energy Mater Sol. Cells 143 (2015) 183-189.
[9] F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, and T. Zhai, “Nanostructured materials and architectures for advanced infrared photodetection,” Adv. Mater. Technol. 2 (2017) 1700005.
[10] P. R. A. Binetti, X. J. M. Leijtens, T. de Vries, Y. S. Oei, L. Di Cioccio, J. M. Fedeli, C. Lagahe, J. Van Campenhout, D. Van Thourhout, P. J. van Veldhoven, R. Nötzel, and M. K. Smit, “InP/InGaAs photodetector on SOI photonic circuitry,” IEEE Photon. J. 2 (2010) 299-305.
[11] A. M. Itsuno, J. D. Phillips, and S. Velicu, “Mid-wave infrared HgCdTe nBn photodetector,” Appl. Phys. Lett. 100 (2012) 161102.
[12] I. Kimukin, N. Biyikli, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed InSb photodetectors on GaAs for Mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 10 (2004) 766-770.
[13] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98 (2011) 061108.
[14] J. W. Zeller, H. Efstathiadis, G. Bhowmik, P. Haldar, N. K. Dhar, J. Lewis, P. Wijewarnasuriya, Y. R. Puri, and A. K. Sood, “Development of Ge PIN photodetectors on 300 mm Si wafers for near-infrared sensing,” Int. J. Engr. Res. Tech. 8 (2015) 23-33.
[15] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee, and K. K. Chattopadhyay, “Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 22788-22798.
[16] A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, K. N. Galkin, N. G. Galkin, and A. K. Gutakovskii, “Enhancement of the Si p-n diode NIR photoresponse by embedding beta-FeSi2 nanocrystallites,” Sci. Rep. 5 (2015) 14795.
[17] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11 (2011) 2219-2224.
[18] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2 (2015) 335.
[19] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, and Y. Tu, “Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection,” Nanotechnology 28 (2017) 275202.
[20] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, and C. Ye, “Flexible Si/PEDOT:PSS hybrid solar cells,” Nano Res. 8 (2015) 3141-3149.
[21] E. Mottay, X. Liu, H. Zhang, E. Mazur, R. Sanatinia, and W. Pfleging, “Industrial applications of ultrafast laser processing,” MRS Bulletin 41 (2016) 984-992.
[22] Y. Su, X. Zhan, H. Zang, Y. Fu, A. Li, H. Xu, S.-L. Chin, and P. Polynkin, “Direct and stand-off fabrication of black silicon with enhanced absorbance in the short-wavelength infrared region using femtosecond laser filament,” Appl. Phys. B 124 (2018) 223.
[23] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[24] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E 9 (2001) 305-309.
[25] Y. Wang, K. Lew, T. Ho, L. Pan, S. Novak, E. Dickey, J. Redwing, and T. Mayer, “Use of phosphine as an n-type dopant source for vapor−liquid−solid growth of silicon nanowires,” Nano Lett. 5 (2005) 2139-2143.
[26] K. K. Lew and J. M. Redwing, “Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates,” J. Cryst. Growth 254 (2003) 14-22.
[27] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-assisted growth of semiconducting nanowires,” Adv. Mater. 15 (2003) 635-640.
[28] Y. Yao, F. Li, and S.-T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chem. Phys. Lett. 406 (2005) 381-385.
[29] H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, and J.-H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci. 4 (2011) 2863.
[30] L. A. Osminkina, K. A. Gonchar, V. S. Marshov, K. V. Bunkov, D. V. Petrov, L. A. Golovan, F. Talkenberg, V. A. Sivakov, and V. Y. Timoshenko, “Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect,” Nanoscale Res. Lett. 7 (2012) 524.
[31] H. A. A. OIDE, S. ONO, “Fabrication of ordered nanostructure on silicon substrate using localized anodization and chemical etching,” Electrochemistry 74 (2006) 379-384.
[32] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, and Z. M. Wang, “Design and fabrication of silicon nanowires towards efficient solar cells,” Nano Today 11 (2016) 704-737.
[33] H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C.-Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A 1 (2013) 9942.
[34] Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24 (2013) 235202.
[35] P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62 (1987) 243-249.
[36] D. Zhiqiang, L. Meicheng, and T. M. Chonto, “Effective light absorption using the double-sided pyramid gratings for thin-film silicon solar cell,” Nanoscale Res. Lett. 13 (2018) 192.
[37] W.-C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377 (2016) 52-58.
[38] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12 (2012) 1616-1619.
[39] I. Karakasoglu, K. X. Wang, and S. Fan, “Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells,” ACS Photonics 2 (2015) 883-889.
[40] W. Liu, S. Zhang, Y. Liu, X. Wang, and F. Yang, “Double sided nanopyramid arrays for broad spectrum absorption enhancement in ultrathin-film solar cells ” IEEE (2016) 2946–2948.
[41] Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6 (2016) 047001.
[42] E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72 (1982) 899.
[43] H.-C. Chang, C.-J. Huang, P.-T. Hsieh, W.-C. Mo, S.-H. Yu, and C.-C. Li, “Improvement on industrial n-type bifacial solar cell with >20.6% efficiency,” Energy Procedia 55 (2014) 643-648.
[44] F. Wang, S. Zhao, B. Liu, Y. Li, Q. Ren, R. Du, N. Wang, C. Wei, X. Chen, G. Wang, B. Yan, Y. Zhao, and X. Zhang, “Silicon solar cells with bifacial metal oxides carrier selective layers,” Nano Energy 39 (2017) 437-443.
[45] N. Zin, K. McIntosh, S. Bakhshi, A. Vázquez-Guardado, T. Kho, K. Fong, M. Stocks, E. Franklin, and A. Blakers, “Polyimide for silicon solar cells with double-sided textured pyramids,” Sol. Energy Mater Sol. Cells 183 (2018) 200-204.
[46] N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, “Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics,” Adv. Funct. Mater. 22 (2012) 3650-3657.
[47] Z. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,” Nanotechnology 19 (2008) 375602.
[48] H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett. 7 (2007) 885-889.
[49] S. Y. Chen and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy,” Thin Solid Films 508 (2006) 222-225.
[50] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430 (2004) 61-65.
[51] C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, and L.-J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology 22 (2011) 055603.
[52] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee, Y.-W. Kim, H. Kim, and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Trans. Nanotechnol. 12 (2013) 704-711.
[53] C. Chuang and S. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Res. 7 (2014) 1592-1603.
[54] S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, “Formation, evolution and annihilation of interstitial clusters in ion implanted Si,” Nucl. Instrum. Methods Phys. Res 148 (1999) 247-251.
[55] M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors 10 (2010) 10571-10600.
[56] M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10 (2016) 895-921.
[57] H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30 (1959) 1127-1134.
[58] H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14 (1969) 328-330.
[59] G.-M. M., “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9 (1931) 273–295.
[60] M. Casalino, “Near-infrared sub-bandgap all-silicon photodetectors: a review,” Int. J. Opt. Appl. 2 (2012) 1-16.
[61] J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06 μm,” Phys. Rev. Lett. 30 (1973) 901-903.
[62] E. V. Stryland, H. Vanherzeele, M. Woodall, M. Soileau, A. Smirl, S. Guha, and T. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24 (1985) 613-623.
[63] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80 (2002) 416-418.
[64] A. Cowan, G. Rieger, and J. Young, “Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12 (2004) 1611.
[65] A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200nm,” Appl. Phys. Lett. 90 (2007) 191104.
[66] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38 (1931) 45-56.
[67] M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” ‎IEEE J. Quantum Electron 52 (2016) 1-10.
[68] J. Cohen, J. Vilms, and R. J. Archer, “Investigation of semiconductor Schottky barriers for optical detection and cathodic emission,” Air Force Cambridge Research Labs (1968).
[69] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” ‎IEEE J. Quantum Electron 46 (2010) 633-643.
[70] V. Vickers, “Model of Schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10 (1971) 2190.
[71] A. Di Bartolomeo, “Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction,” ‎Phys. Rep 606 (2016) 1-58.
[72] W. Schottky, “Halbleitertheorie der Sperrschicht,” Sci. Nat. 26 (1938) 843.
[73] N. F. Mott, “Note on the contact between a metal and an insulator or semi-conductor,” Math. Proc. Camb. Philos. Soc. 34 (1938) 568-572.
[74] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71 (1947) 717-727.
[75] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal‐semiconductor systems,” J. Appl. Phys. 36 (1965) 3212-3220.
[76] C. Chen, B. Nechay, and B. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” ‎IEEE Trans. Electron Devices 38 (1991) 1094-1103.
[77] B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” ‎Infrared Phys. Technol 43 (2002) 85-90.
[78] H. Elabd, T. Villani, and W. Ko, “Palladium-silicide Schottky-barrier IR-CCD for SWIR applications at intermediate temperatures,” IEEE Electron Device Lett. 3 (1982) 89-90.
[79] R. McKee, “Enhanced quantum efficiency of Pd2Si Schottky infrared diodes on〈111〉Si,” ‎IEEE Trans. Electron Devices 31 (1984) 968-970.
[80] B. Tsaur, M. Weeks, R. Trubiano, P. Pellegrini, and T. Yew, “IrSi Schottky-barrier infrared detectors with 10-μm cutoff wavelength,” IEEE Electron Device Lett. 9 (1988) 650-653.
[81] B. Tsaur, C. Chen, and B. Nechay, “IrSi Schottky-barrier infrared detectors with wavelength response beyond 12 μm,” IEEE Electron Device Lett. 11 (1990) 415-417.
[82] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92 (2008) 081103.
[83] S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 93 (2008) 071108.
[84] S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20 (2008) 1396-1398.
[85] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6 (2018) 1700638.
[86] M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, and N. J. Halas, “Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection,” ACS Photonics 5 (2018) 3472-3477.
[87] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, and S. J. Chua, “Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure,” Nanotechnology 30 (2019) 075204.
[88] J. Duran and A. Sarangan, “Schottky-barrier photodiode internal quantum efficiency dependence on nickel silicide film thickness,” IEEE Photon. J. 11 (2019) 1-15.
[89] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J. Kim, K. Lee, J. H. Eraker, X. Li, S. Sinha, N. Fang, P. Ferreira, and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology 24 (2013) 225305.
[90] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching,” Nanoscale 9 (2017) 449-453.
[91] Y. Xu, Y. Xuan, and X. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy,” Solar Energy 158 (2017) 504-510.
[92] A. Cassie and S. Baxter, “Wettability of porous surfaces,” J. Chem. Soc. Faraday Trans 40 (1994) 546.
[93] R. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28 (1936) 988-994.
[94] J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27 (2010) 730-734.
[95] J. Cleary, R. Peale, D. Shelton, G. Boreman, R. S. , and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proceedings 1133 (2008).
[96] H. Norde, “A modified forward I‐V plot for Schottky diodes with high series resistance,” J. Appl. Phys. 50 (1979) 5052-5053.
[97] S. Gholami and M. Khakbaz, “Measurement of I-V characteristics of a PtSi/p-Si Schottky barrier diode at low temperatures,” Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5 (2011) 128.
[98] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang, and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions,” Small 10 (2014) 2345-2351.
[99] P.-L. Ong, W. B. Euler, and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination,” Appl. Phys. Lett. 96 (2010) 033106.
[100] F. Cao, Q. Liao, K. Deng, L. Chen, L. Li, and Y. Zhang, “Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors,” Nano Res. 11 (2018) 1722-1730.
[101] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96 (2010) 241112.
[102] S. Li, N. G. Tarr, W. Ye, and P. Berini, “Pd Schottky barrier photodetector integrated with LOCOS-defined SOI waveguides,” IEEE (2015).
[103] M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared all-silicon photodetectors,” Int. J. Photoenergy 2012 (2012) 1-6.
[104] M. Gioffre, G. Coppola, M. Iodice, and M. Casalino, “Integrable near-infrared photodetectors based on hybrid erbium/silicon junctions,” Sensors 18 (2018) 3755.
[105] F. Hu, X. Y. Dai, Z. Q. Zhou, X. Y. Kong, S. L. Sun, R. J. Zhang, S. Y. Wang, M. Lu, and J. Sun, “Black silicon Schottky photodetector in sub-bandgap near-infrared regime,” Opt. Express 27 (2019) 3161-3168.
[106] S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100 (2012) 061109.
[107] S. Roy, K. Midya, S. P. Duttagupta, and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” J. Appl. Phys. 116 (2014) 124507.
[108] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh, and W. W. Wu, “Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications,” Nano Lett. 16 (2016) 1086-1091.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top