跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇煥喬
研究生(外文):Huan-Chiao Su
論文名稱:人類多能性幹細胞分化心肌細胞培養於熱敏性高分子塗佈細胞外間質
論文名稱(外文):Differentiation of Human Pluripotent Stem Cells into Cardiomyocytes Cultured on Thermo-Responsive Polymer Coated with Extracellular Matrix
指導教授:樋口亞紺
指導教授(外文):Akon Higuchi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:117
中文關鍵詞:熱敏性聚合物人類多能性幹細胞衍生心肌細胞細胞外基質
外文關鍵詞:embryonic stem cellinduced pluripotent stem celldifferentiationthermo-responsive polymercardiomyocyteextracellular matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類多能性幹細胞對於組織再生醫學是具有吸引力的來源。人體多能性幹細胞包括人體胚胎幹細胞與人體誘導多能性幹細胞已被使用在心血管研究包括 (a) 人類心臟發育 (b) 藥物發現 (c) 心臟毒性篩查和 (d) 疾病模型。此外,人體胚胎幹細胞分化的心肌前驅細胞已被用於臨床實驗中,用於治療心肌梗塞的患者。近年來,一直迫切需要在無異種條件下使用化學成分確定的培養基,發展再現性高且高效率的人體多能性幹細胞分化成心肌細胞的方法。特別是,一直以來都難以從培養皿上的未分化細胞中分離已分化或前驅的細胞。在這項研究中,熱敏性聚合物,如聚N-異丙基丙烯酰胺(polyNIPAAm),聚(N-異丙基丙烯酰胺-丙烯酸丁酯)(polyNIPAAm-co-BA)其在20 ℃ 時具有低臨界溶液溫度(LCST),作為與幾種細胞外間質(ECM)綴合的細胞培養皿上的表面塗層聚合物。使用這個【智能生物材料】,開發出具有細胞分選功能的培養皿,可以分離或純化人體多能性幹細胞分化的心肌細胞在這個具有熱敏性的表面上。比起用其他細胞外間質(LN-511(層粘連蛋白-511)、纖連蛋白、第一型膠原蛋白或重組玻連蛋白)塗層於聚N-異丙基丙烯酰胺表面上,在塗有LN-521(層粘連蛋白-521)的聚N-異丙基丙烯酰胺表面上發現人體多能性幹細胞分化的心肌細胞具有較強的貼附能力。在低臨界溶液溫度(LCST)下,從熱敏感性表面收集的分離細胞其表面標誌物cTnT(心肌肌鈣蛋白T,心肌細胞標記物)表達高於未分離細胞。此外,發現人體多能性幹細胞分化的心肌細胞再次利用熱敏性表面分選後其cTnT的表現量可以高於90%。此外,人體多能性幹細胞分化的心肌細胞在塗覆有細胞外間質的熱敏性聚合物皿顯示出比直接塗覆有細胞外間質的細胞培養皿有著更好的細胞附著力。還證明了人體多能性幹細胞分化成心肌細胞的過程中,在用重組玻連蛋白(rVN)塗覆的聚N-異丙基丙烯酰胺共聚物表面上有更高的存活率比起直接塗覆重組玻連蛋白(rVN)的表面。可以得出結論,塗有LN-521的熱敏性聚合物表面可以用作細胞分選培養皿,並且可以在無異種細胞培養條件下分離具有高純度的人體多能性幹細胞分化的心肌細胞。
The human pluripotent stem cells (hPSCs) are attractive source for tissue regeneration medicine. hPSCs including hiPSCs (human induced pluripotent stem cells) and hESCs (human embryonic stem cells) have been used in the cardiovascular investigation of (a) human cardiac development, (b) drug discoveries, (c) cardiotoxicity screening, and (d) disease modeling. Furthermore, hESC-derived cardiac progenitors have started to be used in clinical trials for the treatment of myocardiac infarction patients. The development of reproducible and highly efficient protocols for hPSC differentiation into cardiomyocytes under xeno-free conditions using chemically defined medium has been in great demand in recent years. Especially, it is difficult to isolate differentiated/progenitor cells from undifferentiated cells on culture dishes. In this study, thermo-responsive polymers such as poly-N-Isopropylacrylamide (polyNIPAAm) and Poly(N-isopropylacrylamide-co-butylacrylate) (polyNIPAAm-co-BA), which have lower critical solution temperature (LCST) around 20 degrees, are selected as surface coating polymers on the cell culture dishes coated with several extracellular matrices (ECMs). Using these smart biomaterials, the cell sorting dishes were developed to isolate/purify hPSCs derived cardiomyocytes (hPSCs-derived-CMs) on the thermoresponsive surface in this study. It was found that the polyNIPPAm surface coated with LN-521 (laminin-521) had stronger affinity to hPSCs-derived-CMs than the surface coated with other ECMs (LN-511 (laminin-511), fibronectin, collagen type I, or recombinant vitronectin (rVN)). The cTnT (cardiac Troponin T, cardiomyocyte marker) was expressed higher on the detached cells from the thermoresponsive surface than non-detached cells, which were collected below LCST. Moreover, cTnT expression of hPSCs-derived-CMs were found to be higher than 90% after resorting on the thermoresponsive surface. The thermoresponsive polymeric dishes coated with ECMs showed better cell attachment of hPSCs-derived-CMs than tissue culture polystyrene (TCPS) dishes coated with ECMs directly. It was also demonstrated that hPSC-derived-CMs had higher survival rate on polyNIPAAm copolymer surface coated with rVN compared to dishes directly coated rVN during differentiation stage into CMs. It is concluded that the thermoresponsive polymer surface coated with LN-521 can serve as the cell sorting dishes and can isolate hPSCs-derived-CMs with high purity in xeno-free cell culture conditions.
Abstract i
摘要 vi
目錄 vii
Index of Figures x
Index of Tables xvii
Chapter 1. Introduction 1
1-1 Human Pluripotent Stem Cells (hPSCs) 1
1-1.1 Human embryonic stem cells (hESCs) 3
1-1.2 Human induced pluripotent stem cells (hiPSCs) 5
1-1.3 Regenerative medicine 7
1-2 Biomaterials for hPSCs Cultivation 9
1-2.1 Human Pluripotent Stem Cells Cultivation (2D system) 9
1-2.2 Integrin-binding site of ECMs for hPSCs culture 12
1-3 hPSCs Culture on Thermoresponsive Surface 13
1-3.1 Characteristics of Poly(N-isopropylacrylamide) 13
1-3.2 New approach for tissue engineering by using thermoresponsive surface 15
1-4 hPSCs-derived Cardiomyocyes Differentiation 16
1-4.1 Functional protocols for cardiac differentiation 16
1-4.2 Cardiomyocytes differentiated from Embryoid Body (EB) 18
1-4.3 Cardiomyocytes differentiation by co-culture system 20
1-4.4 Cardiomyocytes differentiated on monolayer substrates 22
1-4.5 Cardiomyocytes differentiation in suspension culture 24
1-4.6 Effect for biomaterials during cardiomyocytes differentiation 27
1-5 Characterization of Cardiomyocytes 28
1-5.1 Morphologies of hPSCs-derived cardiomyocytes 28
1-5.2 Flow cytometry analysis of cardiomyocytes 29
1-5.3 Immunofluorescence staining analysis of cardiomyocytes 31
1-5.4 Goal of This Research 33
Chapter 2. Material and Methods 34
2-1 Materials 34
2-1.1 Cell lines 34
2-1.2 Materials for thermo-responsive surface 34
2-1.3 Stem cells culture medium and others 34
2-1.4 Cardiomyocytes differentiation medium and chemicals 35
2-1.5 Immunostaining and flow cytometry analysis 35
2-2 Methods 37
2-2.1 Preparation of thermoresponsive surface dishes (2D) 37
2-2.2 Culture and subculture of human pluripotent stem cells 38
2-2.3 Seeding Density Measurements of hPSCs 39
2-3 Cardiomyocytes Differentiation 40
2-3.1 Differentiation medium preparation 40
2-3.2 Cardiomyocyte differentiation protocol 41
2-4 Characterization of hPSC-derived CMs 44
2-4.1 Immunofluorescence staining protocol of cardiomyocytes analysis 44
2-4.2 Flow cytometry measurement protocol for hPSC-derived cardiomyocytes analysis 45
Chapter 3. Result and Discussion 47
3-1 Thermoresponsive Polymers Selection for Thermoresponsive Coated Surface 47
3-1.1 hPSCs culture on thermoresponsive coated surface conjugated with rhVN: hPSCs morphologies for different concentration of thermoresponsive polymers 47
3-1.2 Expansion fold and attachment ratio of hESCs on polyNIPAAm and polyNIPAAm-co-BA coated surface 50
3-1.3 hESCs-derived-CMs culture on polyNIPAAm and polyNIPAAm-co-BA coated surface immobolized with rhVN by Jove protocol 53
3-1.4 hESCs-derived-CMs culture on polyNIPAAm-coated and polyNIPAAm-co-BA-coated surface immobilized with rhVN by the revised protocol (protocol 4) 55
3-2 Characterization of polyNIPAAm Immobilized with ECMs 57
3-2.1 X-ray photoelectron spectroscopy (XPS) analysis 57
3-2.2 Water contact angle (CA) analysis 60
3-3 Optimal Thermoresponsive Surface Immobilized with Laminin-521 for Cardiomyocytes Differentiation 62
3-3.1 hESCs-derived CMs culture on polyNIPAAm-coated and polyNIPAAm-co-BA-coated surfaces immobilized with laminin-521 by Jove protocol 62
3-3.2 Beating Colonies Number and Beating Frequency of hESC-derived CMs on Thermoresponsive Surface 64
3-4 Sorting High Purified Cardiomyocytes on Thermoresponsive Surface 66
3-4.1 Thermoresponsive sorting method 67
3-4.2 Immunostaining analysis of hESC-derived CMs on thermoresponsive surface 68
3-4.3 Length determination of sarcomere structure 72
3-4.4 low cytometry analysis of cardiomyocytes differentiated from hPSCs on smart sorting surface 74
3-4.5 Sorting hPSC-deruved CMs on comparative surfaces 75
Chapter 4. Conclusion 78
Reference 80
Supplementary Data 89
1. Becker, A.J., E.A. McCulloch, and J.E. Till, Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. 1963.
2. Siminovitch, L., E.A. McCulloch, and J.E. Till, The distribution of colony‐forming cells among spleen colonies. Journal of Cellular and Comparative Physiology, 1963. 62(3): p. 327-336.
3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147.
4. Shamblott, M.J., et al., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences, 1998. 95(23): p. 13726-13731.
5. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular medicine, 2000. 6(2): p. 88.
6. Wollert, K.C. and H. Drexler, Clinical applications of stem cells for the heart. Circulation research, 2005. 96(2): p. 151-163.
7. Abdallah, B. and M. Kassem, Human mesenchymal stem cells: from basic biology to clinical applications. Gene therapy, 2008. 15(2): p. 109.
8. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming, in Engineering of stem cells. 2009, Springer. p. 185-199.
9. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
10. Forostyak, O., G. Dayanithi, and S. Forostyak, CNS regenerative medicine and stem cells. Opera Medica et Physiologica, 2016(1).
11. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 2002. 13(12): p. 4279-4295.
12. Duscher, D., et al., Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology, 2016. 62(2): p. 216-225.
13. Zhang, Y., et al., Mesenchymal stem cells: Potential application for the treatment of hepatic cirrhosis. Stem cell research & therapy, 2018. 9(1): p. 59.
14. Sarukhan, A., L. Zanotti, and A. Viola, Mesenchymal stem cells: myths and reality. Swiss medical weekly, 2015. 145(5152).
15. Xv, J., et al., Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell and tissue research, 2017. 368(2): p. 239-248.
16. Li, C.-y., et al., Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem cell research & therapy, 2015. 6(1): p. 55.
17. Schipanski, D., N. Knoepffler, and S.L. Sorgner, Humanbiotechnology as social challenge: an interdisciplinary introduction to bioethics. 2016: Routledge.
18. Majo, F., et al., Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 2008. 456(7219): p. 250.
19. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-458.
20. Lewis, P., et al., Embryonic Stem Cells. 2018: p. 1-51.
21. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nat Biotechnol, 2005. 23(6): p. 699-708.
22. Vazin, T. and W.J. Freed, Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci, 2010. 28(4): p. 589-603.
23. Amit, M., et al., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental biology, 2000. 227(2): p. 271-278.
24. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nature reviews Molecular cell biology, 2016. 17(3): p. 194.
25. Trounson, A. and C. McDonald, Stem cell therapies in clinical trials: progress and challenges. Cell stem cell, 2015. 17(1): p. 11-22.
26. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature reviews Drug discovery, 2015. 14(10): p. 681.
27. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British medical bulletin, 2013. 108(1): p. 73-94.
28. Hyun, I., The bioethics of stem cell research and therapy. J Clin Invest, 2010. 120(1): p. 71-5.
29. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocr Rev, 2009. 30(3): p. 204-13.
30. Power, C. and J.E. Rasko, Will cell reprogramming resolve the embryonic stem cell controversy? A narrative review. Annals of internal medicine, 2011. 155(2): p. 114-121.
31. Ilic, D. and J.M. Polak, Stem cells in regenerative medicine: introduction. British medical bulletin, 2011. 98(1): p. 117-126.
32. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
33. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872.
34. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. science, 2007. 318(5858): p. 1917-1920.
35. González, F., S. Boué, and J.C.I. Belmonte, Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews Genetics, 2011. 12(4): p. 231.
36. Hacein-Bey-Abina, S., et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. science, 2003. 302(5644): p. 415-419.
37. Zhao, T., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212.
38. Okita, K., et al., A more efficient method to generate integration-free human iPS cells. Nature methods, 2011. 8(5): p. 409.
39. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362.
40. Stadtfeld, M., et al., Induced pluripotent stem cells generated without viral integration. Science, 2008. 322(5903): p. 945-949.
41. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell, 2010. 7(5): p. 618-630.
42. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell, 2009. 4(6): p. 472.
43. Kriks, S., et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 2011. 480(7378): p. 547.
44. Nori, S., et al., Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences, 2011. 108(40): p. 16825-16830.
45. Okamoto, S. and M. Takahashi, Induction of retinal pigment epithelial cells from monkey iPS cells. Investigative ophthalmology & visual science, 2011. 52(12): p. 8785-8790.
46. Yamanaka, S., A fresh look at iPS cells. cell, 2009. 137(1): p. 13-17.
47. Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell stem cell, 2012. 10(6): p. 678-684.
48. Jaklenec, A., et al., Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Engineering Part B: Reviews, 2012. 18(3): p. 155-166.
49. Mahla, R.S., Stem cells applications in regenerative medicine and disease therapeutics. International journal of cell biology, 2016. 2016.
50. Caplan, A.I., Mesenchymal stem cells in regenerative medicine, in Principles of Regenerative Medicine. 2019, Elsevier. p. 219-227.
51. Higuchi, A., et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest, 2017. 97(10): p. 1167-1179.
52. Shadrin, I.Y., et al., Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun, 2017. 8(1): p. 1825.
53. Mao, A.S. and D.J. Mooney, Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences, 2015. 112(47): p. 14452-14459.
54. Amit, M., et al., Feeder layer-and serum-free culture of human embryonic stem cells. Biology of reproduction, 2004. 70(3): p. 837-845.
55. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. The international journal of biochemistry & cell biology, 2006. 38(7): p. 1063-1075.
56. Kleinman, H.K. and G.R. Martin. Matrigel: basement membrane matrix with biological activity. in Seminars in cancer biology. 2005. Elsevier.
57. Akopian, V., et al., Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cellular & Developmental Biology-Animal, 2010. 46(3-4): p. 247-258.
58. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-1890.
59. Villa‐Diaz, L., et al., Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem cells, 2013. 31(1): p. 1-7.
60. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 581.
61. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
62. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
63. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature biotechnology, 2001. 19(10): p. 971.
64. Yao, S., et al., Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences, 2006. 103(18): p. 6907-6912.
65. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nature biotechnology, 2006. 24(2): p. 185.
66. Wang, L., et al., Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 2007. 110(12): p. 4111-4119.
67. Derda, R., et al., Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS chemical biology, 2007. 2(5): p. 347-355.
68. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32.
69. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self‐renewal via αVβ5 integrin. Stem cells, 2008. 26(9): p. 2257-2265.
70. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424.
71. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC developmental biology, 2010. 10(1): p. 60.
72. Shattil, S.J., C. Kim, and M.H. Ginsberg, The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol, 2010. 11(4): p. 288-300.
73. Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. cell, 2002. 110(6): p. 673-687.
74. Ginsberg, M.H., A. Partridge, and S.J. Shattil, Integrin regulation. Curr Opin Cell Biol, 2005. 17(5): p. 509-16.
75. Rowland, T.J., et al., Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem cells and development, 2009. 19(8): p. 1231-1240.
76. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
77. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol, 2010. 28(6): p. 611-5.
78. Israeli-Rosenberg, S., et al., Integrins and integrin-associated proteins in the cardiac myocyte. Circulation research, 2014. 114(3): p. 572-586.
79. Todaro, G.J. and H. Green, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of cell biology, 1963. 17(2): p. 299-313.
80. Barrandon, Y. and H. Green, Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell, 1987. 50(7): p. 1131-1137.
81. Takezawa, T., Y. Mori, and K. Yoshizato, Cell culture on a thermo-responsive polymer surface. Bio/technology, 1990. 8(9): p. 854.
82. Yamada, N., et al., Thermo‐responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p. 571-576.
83. Schild, H.G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science, 1992. 17(2): p. 163-249.
84. Kobayashi, J., et al., Aqueous chromatography utilizing pH-/temperature-responsive polymer stationary phases to separate ionic bioactive compounds. Analytical chemistry, 2001. 73(9): p. 2027-2033.
85. Nakayama, M., et al., Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. Reactive and Functional Polymers, 2007. 67(11): p. 1398-1407.
86. Nakayama, M. and T. Okano, Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules, 2005. 6(4): p. 2320-2327.
87. Yoshida, R., et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995. 374(6519): p. 240.
88. Akiyama, Y., et al., Ultrathin poly (N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20(13): p. 5506-5511.
89. Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1-3): p. 69-84.
90. Fukumori, K., et al., Temperature-responsive glass coverslips with an ultrathin poly (N-isopropylacrylamide) layer. Acta Biomaterialia, 2009. 5(1): p. 470-476.
91. Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003. 24(13): p. 2309-2316.
92. Yamato, M. and T. Okano, Cell sheet engineering. Materials today, 2004. 7(5): p. 42-47.
93. Takahashi, H., et al., Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules, 2011. 13(1): p. 253-260.
94. Sekine, H., T. Shimizu, and T. Okano, Cell sheet tissue engineering for heart failure, in Etiology and Morphogenesis of Congenital Heart Disease. 2016, Springer, Tokyo. p. 19-24.
95. Kobayashi, J., et al., Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. Journal of Biomedical Materials Research Part A, 2019.
96. Sudo, Y., et al., Star-shaped thermoresponsive polymers with various functional groups for cell sheet engineering. Langmuir, 2018. 34(2): p. 653-662.
97. Nagase, K., et al., Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018. 153: p. 27-48.
98. Murry, C.E., H. Reinecke, and L.M. Pabon, Regeneration gaps: observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 2006. 47(9): p. 1777-1785.
99. Tongers, J., D.W. Losordo, and U. Landmesser, Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European heart journal, 2011. 32(10): p. 1197-1206.
100. Sharma, A., J.C. Wu, and S.M. Wu, Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem cell research & therapy, 2013. 4(6): p. 150.
101. Hoekstra, M., et al., Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Frontiers in physiology, 2012. 3: p. 346.
102. Sinnecker, D., K.-L. Laugwitz, and A. Moretti, Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacology & therapeutics, 2014. 143(2): p. 246-252.
103. Scott, C.W., M.F. Peters, and Y.P. Dragan, Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology letters, 2013. 219(1): p. 49-58.
104. Braam, S.R., R. Passier, and C.L. Mummery, Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends in pharmacological sciences, 2009. 30(10): p. 536-545.
105. Fukuda, K., Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artificial organs, 2001. 25(3): p. 187-193.
106. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of clinical investigation, 2001. 108(3): p. 407-414.
107. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
108. Talkhabi, M., N. Aghdami, and H. Baharvand, Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci, 2016. 145: p. 98-113.
109. Karakikes, I., et al., Small molecule‐mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem cells translational medicine, 2014. 3(1): p. 18-31.
110. Yang, L., et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 2008. 453(7194): p. 524.
111. Mauritz, C., et al., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 2008. 118(5): p. 507.
112. Jiang, B., et al., Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials, 2015. 65: p. 103-114.
113. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
114. Mummery, C.L., et al., Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation, 1991. 46(1): p. 51-60.
115. Mummery, C., et al., Cardiomyocyte differentiation of mouse and human embryonic stem cells. Journal of anatomy, 2002. 200(3): p. 233-242.
116. Rohwedel, J., et al., Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Developmental biology, 1994. 164(1): p. 87-101.
117. Mummery, C., et al., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2003. 107(21): p. 2733-2740.
118. Xu, X.Q., et al., Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 2008. 76(9): p. 958-970.
119. Scott, L.J., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. science, 2007. 316(5829): p. 1341-1345.
120. Amano, M., M. Nakayama, and K. Kaibuchi, Rho‐kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton, 2010. 67(9): p. 545-554.
121. Laflamme, M.A., et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007. 25(9): p. 1015-24.
122. Lian, X., et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A, 2012. 109(27): p. E1848-57.
123. Bhattacharya, S., et al., High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp, 2014(91): p. 52010.
124. Burridge, P.W., et al., Chemically defined generation of human cardiomyocytes. Nat Methods, 2014. 11(8): p. 855-60.
125. Naito, A.T., et al., Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences, 2006. 103(52): p. 19812-19817.
126. Ren, Y., et al., Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Journal of molecular and cellular cardiology, 2011. 51(3): p. 280-287.
127. Ueno, S., et al., Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences, 2007. 104(23): p. 9685-9690.
128. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-128.
129. Desbordes, S.C. and L. Studer, Adapting human pluripotent stem cells to high-throughput and high-content screening. Nature protocols, 2013. 8(1): p. 111.
130. Lecina, M., et al., Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1609-1619.
131. Kempf, H., et al., Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem cell reports, 2014. 3(6): p. 1132-1146.
132. Oh, S.K., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem cell research, 2009. 2(3): p. 219-230.
133. Graichen, R., et al., Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 2008. 76(4): p. 357-370.
134. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem cells, 2008. 26(9): p. 2300-2310.
135. Niebruegge, S., et al., Generation of human embryonic stem cell‐derived mesoderm and cardiac cells using size‐specified aggregates in an oxygen‐controlled bioreactor. Biotechnology and bioengineering, 2009. 102(2): p. 493-507.
136. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications, 2012. 3: p. 1236.
137. Moyes, K.W., et al., Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem cells and development, 2013. 22(16): p. 2315-2325.
138. Köhler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. nature, 1975. 256(5517): p. 495.
139. Bashashati, A. and R.R. Brinkman, A survey of flow cytometry data analysis methods. Advances in bioinformatics, 2009. 2009.
140. Johnson, K., M. Dooner, and P. Quesenberry, Fluorescence activated cell sorting: a window on the stem cell. Current pharmaceutical biotechnology, 2007. 8(3): p. 133-139.
141. Bonner, W., et al., Fluorescence activated cell sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
142. Carter, N. and E. Meyer, Introduction to the principles of flow cytometry. Flow cytometry: a pratical approach. Oxford University Press, Oxford, 2000.
143. Zhang, J., et al., Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation research, 2012. 111(9): p. 1125-1136.
144. Chuva de Sousa Lopes, S.M., et al., Patterning the heart, a template for human cardiomyocyte development. Developmental dynamics: an official publication of the American Association of Anatomists, 2006. 235(7): p. 1994-2002.
145. Bird, S., et al., The human adult cardiomyocyte phenotype. Cardiovascular research, 2003. 58(2): p. 423-434.
146. Fritschy, J.M. and W. Härtig, Immunofluorescence. e LS, 2001.
147. Neely, M.D., et al., Induced Pluripotent Stem Cells (iPSCs): an emerging model system for the study of human neurotoxicology, in Cell Culture Techniques. 2011, Springer. p. 27-61.
148. Sharma, A., et al., Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp, 2015(97).
149. Peng, S. and B. Bhushan, Smart polymer brushes and their emerging applications. RSC Advances, 2012. 2(23): p. 8557-8578.
150. Hoffman, A.S., The origins and evolution of “controlled” drug delivery systems. Journal of controlled release, 2008. 132(3): p. 153-163.
151. Becerra, N.Y., B.L. López, and L.M. Restrepo, Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly (N-isopropylacrylamide-co-butylacrylate). Journal of Materials Science: Materials in Medicine, 2013. 24(4): p. 1043-1052.
152. Wang, H. and X. He, Destroying Cancer Cells Through Cooling And Warming With A Novel Nanoplatform.
153. Hiebl, B., et al., Viability, morphology and function of primary endothelial cells on poly (n-butyl acrylate) networks having elastic moduli comparable to arteries. Journal of Biomaterials Science, Polymer Edition, 2012. 23(7): p. 901-915.
154. 劉政輝 Liu, C.H., Human Embryonic Stem Cell Differentiation into Cardiomyocytes on Biomaterials Immobilized Nanosegments. 2017.
155. Di Baldassarre, A., et al., Cardiomyocytes Derived from Human Cardiopoietic Amniotic Fluids. Scientific reports, 2018. 8(1): p. 12028.
156. Allen, D. and J. Kentish, The cellular basis of the length-tension relation in cardiac muscle. Journal of molecular and cellular cardiology, 1985. 17(9): p. 821-840.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊