|
1. Becker, A.J., E.A. McCulloch, and J.E. Till, Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. 1963. 2. Siminovitch, L., E.A. McCulloch, and J.E. Till, The distribution of colony‐forming cells among spleen colonies. Journal of Cellular and Comparative Physiology, 1963. 62(3): p. 327-336. 3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. science, 1998. 282(5391): p. 1145-1147. 4. Shamblott, M.J., et al., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences, 1998. 95(23): p. 13726-13731. 5. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular medicine, 2000. 6(2): p. 88. 6. Wollert, K.C. and H. Drexler, Clinical applications of stem cells for the heart. Circulation research, 2005. 96(2): p. 151-163. 7. Abdallah, B. and M. Kassem, Human mesenchymal stem cells: from basic biology to clinical applications. Gene therapy, 2008. 15(2): p. 109. 8. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming, in Engineering of stem cells. 2009, Springer. p. 185-199. 9. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35. 10. Forostyak, O., G. Dayanithi, and S. Forostyak, CNS regenerative medicine and stem cells. Opera Medica et Physiologica, 2016(1). 11. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 2002. 13(12): p. 4279-4295. 12. Duscher, D., et al., Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology, 2016. 62(2): p. 216-225. 13. Zhang, Y., et al., Mesenchymal stem cells: Potential application for the treatment of hepatic cirrhosis. Stem cell research & therapy, 2018. 9(1): p. 59. 14. Sarukhan, A., L. Zanotti, and A. Viola, Mesenchymal stem cells: myths and reality. Swiss medical weekly, 2015. 145(5152). 15. Xv, J., et al., Mesenchymal stem cells moderate immune response of type 1 diabetes. Cell and tissue research, 2017. 368(2): p. 239-248. 16. Li, C.-y., et al., Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem cell research & therapy, 2015. 6(1): p. 55. 17. Schipanski, D., N. Knoepffler, and S.L. Sorgner, Humanbiotechnology as social challenge: an interdisciplinary introduction to bioethics. 2016: Routledge. 18. Majo, F., et al., Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 2008. 456(7219): p. 250. 19. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-458. 20. Lewis, P., et al., Embryonic Stem Cells. 2018: p. 1-51. 21. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nat Biotechnol, 2005. 23(6): p. 699-708. 22. Vazin, T. and W.J. Freed, Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci, 2010. 28(4): p. 589-603. 23. Amit, M., et al., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental biology, 2000. 227(2): p. 271-278. 24. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nature reviews Molecular cell biology, 2016. 17(3): p. 194. 25. Trounson, A. and C. McDonald, Stem cell therapies in clinical trials: progress and challenges. Cell stem cell, 2015. 17(1): p. 11-22. 26. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature reviews Drug discovery, 2015. 14(10): p. 681. 27. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British medical bulletin, 2013. 108(1): p. 73-94. 28. Hyun, I., The bioethics of stem cell research and therapy. J Clin Invest, 2010. 120(1): p. 71-5. 29. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocr Rev, 2009. 30(3): p. 204-13. 30. Power, C. and J.E. Rasko, Will cell reprogramming resolve the embryonic stem cell controversy? A narrative review. Annals of internal medicine, 2011. 155(2): p. 114-121. 31. Ilic, D. and J.M. Polak, Stem cells in regenerative medicine: introduction. British medical bulletin, 2011. 98(1): p. 117-126. 32. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676. 33. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872. 34. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. science, 2007. 318(5858): p. 1917-1920. 35. González, F., S. Boué, and J.C.I. Belmonte, Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews Genetics, 2011. 12(4): p. 231. 36. Hacein-Bey-Abina, S., et al., LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. science, 2003. 302(5644): p. 415-419. 37. Zhao, T., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212. 38. Okita, K., et al., A more efficient method to generate integration-free human iPS cells. Nature methods, 2011. 8(5): p. 409. 39. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362. 40. Stadtfeld, M., et al., Induced pluripotent stem cells generated without viral integration. Science, 2008. 322(5903): p. 945-949. 41. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell, 2010. 7(5): p. 618-630. 42. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell stem cell, 2009. 4(6): p. 472. 43. Kriks, S., et al., Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 2011. 480(7378): p. 547. 44. Nori, S., et al., Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences, 2011. 108(40): p. 16825-16830. 45. Okamoto, S. and M. Takahashi, Induction of retinal pigment epithelial cells from monkey iPS cells. Investigative ophthalmology & visual science, 2011. 52(12): p. 8785-8790. 46. Yamanaka, S., A fresh look at iPS cells. cell, 2009. 137(1): p. 13-17. 47. Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell stem cell, 2012. 10(6): p. 678-684. 48. Jaklenec, A., et al., Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Engineering Part B: Reviews, 2012. 18(3): p. 155-166. 49. Mahla, R.S., Stem cells applications in regenerative medicine and disease therapeutics. International journal of cell biology, 2016. 2016. 50. Caplan, A.I., Mesenchymal stem cells in regenerative medicine, in Principles of Regenerative Medicine. 2019, Elsevier. p. 219-227. 51. Higuchi, A., et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest, 2017. 97(10): p. 1167-1179. 52. Shadrin, I.Y., et al., Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun, 2017. 8(1): p. 1825. 53. Mao, A.S. and D.J. Mooney, Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences, 2015. 112(47): p. 14452-14459. 54. Amit, M., et al., Feeder layer-and serum-free culture of human embryonic stem cells. Biology of reproduction, 2004. 70(3): p. 837-845. 55. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. The international journal of biochemistry & cell biology, 2006. 38(7): p. 1063-1075. 56. Kleinman, H.K. and G.R. Martin. Matrigel: basement membrane matrix with biological activity. in Seminars in cancer biology. 2005. Elsevier. 57. Akopian, V., et al., Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cellular & Developmental Biology-Animal, 2010. 46(3-4): p. 247-258. 58. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-1890. 59. Villa‐Diaz, L., et al., Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem cells, 2013. 31(1): p. 1-7. 60. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 581. 61. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10. 62. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144. 63. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature biotechnology, 2001. 19(10): p. 971. 64. Yao, S., et al., Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences, 2006. 103(18): p. 6907-6912. 65. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nature biotechnology, 2006. 24(2): p. 185. 66. Wang, L., et al., Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 2007. 110(12): p. 4111-4119. 67. Derda, R., et al., Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS chemical biology, 2007. 2(5): p. 347-355. 68. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and biophysical research communications, 2008. 375(1): p. 27-32. 69. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self‐renewal via αVβ5 integrin. Stem cells, 2008. 26(9): p. 2257-2265. 70. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424. 71. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC developmental biology, 2010. 10(1): p. 60. 72. Shattil, S.J., C. Kim, and M.H. Ginsberg, The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol, 2010. 11(4): p. 288-300. 73. Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. cell, 2002. 110(6): p. 673-687. 74. Ginsberg, M.H., A. Partridge, and S.J. Shattil, Integrin regulation. Curr Opin Cell Biol, 2005. 17(5): p. 509-16. 75. Rowland, T.J., et al., Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem cells and development, 2009. 19(8): p. 1231-1240. 76. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40. 77. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol, 2010. 28(6): p. 611-5. 78. Israeli-Rosenberg, S., et al., Integrins and integrin-associated proteins in the cardiac myocyte. Circulation research, 2014. 114(3): p. 572-586. 79. Todaro, G.J. and H. Green, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of cell biology, 1963. 17(2): p. 299-313. 80. Barrandon, Y. and H. Green, Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell, 1987. 50(7): p. 1131-1137. 81. Takezawa, T., Y. Mori, and K. Yoshizato, Cell culture on a thermo-responsive polymer surface. Bio/technology, 1990. 8(9): p. 854. 82. Yamada, N., et al., Thermo‐responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p. 571-576. 83. Schild, H.G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science, 1992. 17(2): p. 163-249. 84. Kobayashi, J., et al., Aqueous chromatography utilizing pH-/temperature-responsive polymer stationary phases to separate ionic bioactive compounds. Analytical chemistry, 2001. 73(9): p. 2027-2033. 85. Nakayama, M., et al., Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. Reactive and Functional Polymers, 2007. 67(11): p. 1398-1407. 86. Nakayama, M. and T. Okano, Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules, 2005. 6(4): p. 2320-2327. 87. Yoshida, R., et al., Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995. 374(6519): p. 240. 88. Akiyama, Y., et al., Ultrathin poly (N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20(13): p. 5506-5511. 89. Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1-3): p. 69-84. 90. Fukumori, K., et al., Temperature-responsive glass coverslips with an ultrathin poly (N-isopropylacrylamide) layer. Acta Biomaterialia, 2009. 5(1): p. 470-476. 91. Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003. 24(13): p. 2309-2316. 92. Yamato, M. and T. Okano, Cell sheet engineering. Materials today, 2004. 7(5): p. 42-47. 93. Takahashi, H., et al., Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules, 2011. 13(1): p. 253-260. 94. Sekine, H., T. Shimizu, and T. Okano, Cell sheet tissue engineering for heart failure, in Etiology and Morphogenesis of Congenital Heart Disease. 2016, Springer, Tokyo. p. 19-24. 95. Kobayashi, J., et al., Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. Journal of Biomedical Materials Research Part A, 2019. 96. Sudo, Y., et al., Star-shaped thermoresponsive polymers with various functional groups for cell sheet engineering. Langmuir, 2018. 34(2): p. 653-662. 97. Nagase, K., et al., Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018. 153: p. 27-48. 98. Murry, C.E., H. Reinecke, and L.M. Pabon, Regeneration gaps: observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 2006. 47(9): p. 1777-1785. 99. Tongers, J., D.W. Losordo, and U. Landmesser, Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European heart journal, 2011. 32(10): p. 1197-1206. 100. Sharma, A., J.C. Wu, and S.M. Wu, Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem cell research & therapy, 2013. 4(6): p. 150. 101. Hoekstra, M., et al., Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Frontiers in physiology, 2012. 3: p. 346. 102. Sinnecker, D., K.-L. Laugwitz, and A. Moretti, Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacology & therapeutics, 2014. 143(2): p. 246-252. 103. Scott, C.W., M.F. Peters, and Y.P. Dragan, Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology letters, 2013. 219(1): p. 49-58. 104. Braam, S.R., R. Passier, and C.L. Mummery, Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends in pharmacological sciences, 2009. 30(10): p. 536-545. 105. Fukuda, K., Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artificial organs, 2001. 25(3): p. 187-193. 106. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of clinical investigation, 2001. 108(3): p. 407-414. 107. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374. 108. Talkhabi, M., N. Aghdami, and H. Baharvand, Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sci, 2016. 145: p. 98-113. 109. Karakikes, I., et al., Small molecule‐mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem cells translational medicine, 2014. 3(1): p. 18-31. 110. Yang, L., et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 2008. 453(7194): p. 524. 111. Mauritz, C., et al., Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 2008. 118(5): p. 507. 112. Jiang, B., et al., Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials, 2015. 65: p. 103-114. 113. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126. 114. Mummery, C.L., et al., Visceral-endoderm-like cell lines induce differentiation of murine P19 embryonal carcinoma cells. Differentiation, 1991. 46(1): p. 51-60. 115. Mummery, C., et al., Cardiomyocyte differentiation of mouse and human embryonic stem cells. Journal of anatomy, 2002. 200(3): p. 233-242. 116. Rohwedel, J., et al., Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Developmental biology, 1994. 164(1): p. 87-101. 117. Mummery, C., et al., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2003. 107(21): p. 2733-2740. 118. Xu, X.Q., et al., Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 2008. 76(9): p. 958-970. 119. Scott, L.J., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. science, 2007. 316(5829): p. 1341-1345. 120. Amano, M., M. Nakayama, and K. Kaibuchi, Rho‐kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton, 2010. 67(9): p. 545-554. 121. Laflamme, M.A., et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007. 25(9): p. 1015-24. 122. Lian, X., et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A, 2012. 109(27): p. E1848-57. 123. Bhattacharya, S., et al., High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp, 2014(91): p. 52010. 124. Burridge, P.W., et al., Chemically defined generation of human cardiomyocytes. Nat Methods, 2014. 11(8): p. 855-60. 125. Naito, A.T., et al., Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences, 2006. 103(52): p. 19812-19817. 126. Ren, Y., et al., Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Journal of molecular and cellular cardiology, 2011. 51(3): p. 280-287. 127. Ueno, S., et al., Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences, 2007. 104(23): p. 9685-9690. 128. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-128. 129. Desbordes, S.C. and L. Studer, Adapting human pluripotent stem cells to high-throughput and high-content screening. Nature protocols, 2013. 8(1): p. 111. 130. Lecina, M., et al., Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1609-1619. 131. Kempf, H., et al., Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem cell reports, 2014. 3(6): p. 1132-1146. 132. Oh, S.K., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem cell research, 2009. 2(3): p. 219-230. 133. Graichen, R., et al., Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 2008. 76(4): p. 357-370. 134. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem cells, 2008. 26(9): p. 2300-2310. 135. Niebruegge, S., et al., Generation of human embryonic stem cell‐derived mesoderm and cardiac cells using size‐specified aggregates in an oxygen‐controlled bioreactor. Biotechnology and bioengineering, 2009. 102(2): p. 493-507. 136. Miyazaki, T., et al., Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications, 2012. 3: p. 1236. 137. Moyes, K.W., et al., Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem cells and development, 2013. 22(16): p. 2315-2325. 138. Köhler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. nature, 1975. 256(5517): p. 495. 139. Bashashati, A. and R.R. Brinkman, A survey of flow cytometry data analysis methods. Advances in bioinformatics, 2009. 2009. 140. Johnson, K., M. Dooner, and P. Quesenberry, Fluorescence activated cell sorting: a window on the stem cell. Current pharmaceutical biotechnology, 2007. 8(3): p. 133-139. 141. Bonner, W., et al., Fluorescence activated cell sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409. 142. Carter, N. and E. Meyer, Introduction to the principles of flow cytometry. Flow cytometry: a pratical approach. Oxford University Press, Oxford, 2000. 143. Zhang, J., et al., Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation research, 2012. 111(9): p. 1125-1136. 144. Chuva de Sousa Lopes, S.M., et al., Patterning the heart, a template for human cardiomyocyte development. Developmental dynamics: an official publication of the American Association of Anatomists, 2006. 235(7): p. 1994-2002. 145. Bird, S., et al., The human adult cardiomyocyte phenotype. Cardiovascular research, 2003. 58(2): p. 423-434. 146. Fritschy, J.M. and W. Härtig, Immunofluorescence. e LS, 2001. 147. Neely, M.D., et al., Induced Pluripotent Stem Cells (iPSCs): an emerging model system for the study of human neurotoxicology, in Cell Culture Techniques. 2011, Springer. p. 27-61. 148. Sharma, A., et al., Derivation of highly purified cardiomyocytes from human induced pluripotent stem cells using small molecule-modulated differentiation and subsequent glucose starvation. J Vis Exp, 2015(97). 149. Peng, S. and B. Bhushan, Smart polymer brushes and their emerging applications. RSC Advances, 2012. 2(23): p. 8557-8578. 150. Hoffman, A.S., The origins and evolution of “controlled” drug delivery systems. Journal of controlled release, 2008. 132(3): p. 153-163. 151. Becerra, N.Y., B.L. López, and L.M. Restrepo, Thermosensitive behavior in cell culture media and cytocompatibility of a novel copolymer: poly (N-isopropylacrylamide-co-butylacrylate). Journal of Materials Science: Materials in Medicine, 2013. 24(4): p. 1043-1052. 152. Wang, H. and X. He, Destroying Cancer Cells Through Cooling And Warming With A Novel Nanoplatform. 153. Hiebl, B., et al., Viability, morphology and function of primary endothelial cells on poly (n-butyl acrylate) networks having elastic moduli comparable to arteries. Journal of Biomaterials Science, Polymer Edition, 2012. 23(7): p. 901-915. 154. 劉政輝 Liu, C.H., Human Embryonic Stem Cell Differentiation into Cardiomyocytes on Biomaterials Immobilized Nanosegments. 2017. 155. Di Baldassarre, A., et al., Cardiomyocytes Derived from Human Cardiopoietic Amniotic Fluids. Scientific reports, 2018. 8(1): p. 12028. 156. Allen, D. and J. Kentish, The cellular basis of the length-tension relation in cardiac muscle. Journal of molecular and cellular cardiology, 1985. 17(9): p. 821-840.
|