(3.235.41.241) 您好!臺灣時間:2021/04/21 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳宗祐
研究生(外文):Tsung-Yu Wu
論文名稱:釕錯合物敏化太陽能電池元件優化與光伏特性探討
指導教授:陳家原
指導教授(外文):Chia-Yuan Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:141
中文關鍵詞:染料敏化太陽能電池釕錯合物電解質優化共敏化光物理電化學
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池(Dye-Sensitized Solar Cells (DSCs))具有簡易製程及低製造成本等優點,是非常有應用潛力的新世代光伏電池技術。本研究針對實驗室開發之新型染料CYC-37及CYC-39進行元件組裝條件的優化以提高其光電轉換效率,除選擇使用Chenodeoxycholic acid (CDCA)與染料分子進行共吸附,以同步降低染料分子的聚集程度與填補裸露的TiO2表面,亦嘗試透過改變I-/I3-氧化還原對電解液的組成(含使用不同的Imidazolium iodide (如DMII、EMII與BMII)、不同濃度的LiI與4-tert-butylpyridine (tBP)),另有調整TiO2厚度、更改染料吸附溫度和時間,以及引入有機染料SBT6-A與CYC-37進行共敏化等。在AM 1.5G 模擬太陽光照射下,CYC-39敏化之元件經上述優化後的最佳短路電流密度(Jsc)、開路電壓(Voc)、填充因子(FF)與光電轉換效率分別為18.92 mA cm-2、0.694 V、70.56%及9.27%;在相同條件下,CYC-37敏化的電池亦可達相同性能(短路電流密度為18.74 mA cm-2,開路電壓為0.688 V,填充因子則為71.84%),兩者均優於Black dye元件效能(8.93%);在CYC-37與SBT6-A共敏化電池部份,SBT6-A補強了CYC-37於短波長吸收(400 ~ 550 nm)的不足,使元件Jsc可增加至20.27 mA cm-2,且光強度調制光電流(IMPS)測量結果亦顯示其元件的電子有效擴散係數(D)也亦高於單一染料敏化之電池元件,最終元件最高光電轉換效率達9.76%。
Dye-sensitized solar cells (DSCs) are the new-generation photovoltaic technologies, which have the advantages such as easy fabrication and low cost. In this study, we optimized the device fabrication conditions to improve power conversion efficiency (PCE) for our new ruthenium complexes sensitizers coded CYC-37 and CYC-39, respectively. In addition to utilizing chenodeoxycholic acid (CDCA) as a co-adsorbent for decreasing dye aggregation and reducing uncovered surface of TiO2 film, we changed the electrolyte composition based on iodide/triiodide (I-/I3-) redox couple, including different imidazolium iodide (BMII, DMII and EMII) as well as different concentration of LiI and tBP. Moreover, we optimized TiO2 thickness, adsorption tempareture and time, as well as the co-sensitization based on CYC-37 and an organic dye (SBT6-A). The best device sensitized with CYC-39 reaches Jsc, Voc and FF of 18.92 mA cm-2, 0.694 V and 70.56%, respectively, yielding PCE of 9.27%. Another device based on CYC-37 also provide the same PCE (the corresponding Jsc, Voc and FF is 18.74 mA cm-2, 0.688 V and 71.84%, respectively), both superior to that of Black dye (8.93%). In the co-sensitized device based on CYC-37 and SBT6-A, the latter dye increases device response in the region of 400 ~ 550 nm, yielding the highest Jsc of 20.27 mA cm-2 and PCE of 9.76%. The corresponding electron diffusion coefficient (D) estimated from the intensity- modulated photocurrent spectroscopy (IMPS) is also the highest among the devices sensitized with single dye molecule.
第一章、緒論 1
1.1前言 1
1.2染料敏化太陽能電池(DSC)的工作原理 2
1.3太陽能電池之光伏參數介紹及影響 3
1.4染料敏化太陽能電池構造及影響效率的因素 5
1.4-1光電極(Photoelectrode) :即有塗布TiO2薄膜的電極 5
1.4-2染料分子 11
1.4-3電解質作用 17
1.4-4電解液中使用的添加劑 19
1.5對電極催化劑 25
1.6 染料吸附溫度對元件光伏特性造成的影響 26
第二章、實驗方法 31
2.1 實驗藥品、材料與儀器 31
2.1-1實驗藥品 31
2.1-2 實驗材料 33
2.1-3 實驗儀器 33
2.2 二氧化鈦球珠(TiO2 beads)的合成與漿料製備 34
2.2-1 二氧化鈦球珠(TiO2 beads)合成 34
2.2-2 適用於網印機(Screen Printing)塗布之二氧化鈦漿料製備 36
2.3 染料溶液配製 37
2.4 電解液配製 37
2.5 光電極製備流程 (示意如圖2-2) 37
2.6 Pt對電極製備 40
2.7 太陽能電池元件的組裝及光伏參數等量測 40
2.8 儀器分析與樣品製備 41
2.8-1 太陽光模擬器及光電轉換效率測量 41
2.8-2 太陽能電池外部量子效率量測系統 42
2.8-3紫外光/可見光/近紅外光吸收光譜 43
2.8-4 交流阻抗分析儀 44
2.8-5 光強度調制光電流/光電壓分析儀 46
2.8-6探針式輪廓儀 47
第三章、結果與討論 49
3.1 應用於本實驗之釕錯合物與有機共吸附染料簡介 49
3.2 共吸附劑CDCA的濃度對CYC-39敏化電池光伏參數的影響 52
3.3 電解液組成變化對於CYC-39敏化之電池元件光伏參數的影響 54
3.3-1於電解液中使用不同種類碘鹽(Iodide salt)之效應 54
3.3-2 電解液中添加不同濃度LiI對元件光伏參數的影響 57
3.3-3 電解液中添加不同濃度BMII對元件光伏參數的影響 59
3.3-4電解液中不同I2濃度對元件光伏參數的影響 60
3.3-5 電解液中添加tBP對元件光伏參數的影響 62
3.3-6 電解液中添加GuSCN對元件光伏參數的影響 64
3.4 針對CYC-39等染料敏化電池元件之電解液優化結果統整 65
3.5針對CYC-37改變散射層的厚度與其元件光伏參數之探討 66
3.6 使用不同厚度的Surlyn對元件光伏參數的影響 68
3.7 SBT6-A染料試驗結果 70
3.8 CYC-37及SBT6-A染料共敏化測試結果 72
3.9 增加TiO2穿透層厚度對CYC-37敏化元件光伏參數的影響 78
3.10 改變吸附溫度及時間對元件光伏參數的影響 80
3.11 使用合成之TiO2進行元件組裝及TiO2膜厚比較 87
3.12-2最佳優化條件所組裝之元件在不同光強下的光伏參數 94
3.13元件之光物理及電化學性質探討 99
3.13-1 CYC-37、SBT6-A及Black dye染料的UV/Vis吸收光譜圖 99
3.13-2電子在TiO2膜上的有效擴散係數 107
3.12-3 影響電子在TiO2膜上的電子生命期因素 110
3.12-4 TiO2膜上的電子擴散長度及電子收集率 116
3.12-5 影響填充因子的因素 117
第四章、結論 119
參考文獻 121
[1] http://www.feu.edu.tw/adms/aao/aao95/jfeu/30/3002/300205.
[2] https://www.nrel.gov/pv/cell-efficiency.html
[3] http://m.qualenergia.it/content/dye-sensitzed-solar-cells.rival conventional-cell-efficiency
[4] (a) B. O’Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737-739; (b) M. S. Kim, B. G. Kim and J. Kim, "Effective variables to control the fill factor of organic photovoltaic cells" ACS Appl. Mater. Interfaces 2009, 1, 1264–1269.
[5] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna "Controlled electron injection and transport at materials interfaces in dye sensitized solar cells" Mater. Sci. Eng. R. 2009, 63, 81–99.
[6] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, "Nanowire dye-sensitized solar cells" Nature 2005, 4, 455–459.
[7] S. Ito, N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%" Thin Solid Films 2008, 516, 4613–4619.
[8] D. Chen, F. Huang, Y. B. Cheng and R. A. Caruso, "Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells" Adv. Mater. 2009, 21, 2206–2210.
[9] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, "Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm) " J. Am. Chem. Soc. 2010, 132, 4438–4444.
[10] H. Yu, S. Zhang, H. Zhao, B. Xue and G. J. Will, "High performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells" Phys. Chem. C. 2009, 113, 16277–16282.
[11] M. Grätzel, "Dye-sensitized solar cells" J. Photoch. Photobio. C. 2003, 4, 145–153.
[12] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X-2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc. 1993, 115, 6382–6390.
[13] M. Grätzel, "Recent advances in sensitized mesoscopic solar cells" Acc. Chem. Res. 2009, 42, 1788–1798.
[14] (a) L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yangc and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent" Energy Environ. Sci. 2012, 5, 6057–6060; (b) K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawab and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897.
[15] J. Cong, X. Yang, L. Kloob and L. Sun, "Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized" Energy Environ. Sci. 2012, 5, 9180–9194.
[16] H. Tian and L. Sun, "Iodine-free redox couples for dye-sensitized solar cells" J. Mater. Chem. 2011, 21, 10592–10601.
[17] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, "Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine" J. Phys. Chem. B 2001, 105, 12809–12815.
[18] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, "Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band" ACS Appl. Mater. Interfaces 2013, 5, 444–450.
[19] Y. Shi, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium" Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[20] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye sensitized TiO2 solar cell (1): The case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B 2005, 109, 3480–3487.
[21] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, "Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability" J. Phys. Chem. C 2009, 113, 21779–21783.
[22] A. Hauch and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells" Electrochimica Acta. 2001, 46, 3457–3466.
[23] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, "Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells" J. Am. Chem. Soc. 2011, 133, 9304–9310.
[24] Q. Wang, J. E. Moser and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells" J. Phys. Chem. B 2005, 109, 14945–14953.
[25] C. Longo, A. F. Nogueira and M. A. De Paoli, "Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy" J. Phys. Chem. B 2002, 106, 5925–5930.
[26] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays" Nano Lett. 2007, 7, 69–74.
[27] N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, "Transport-limited recombination of photocarriers in dye- sensitized nanocrystalline TiO2 solar cells" J. Phys. Chem. B 2003, 107, 11307–11315.
[28] Z. Fei, F. D. Bobbink, E. P. ́ Unescu, R. Scopelliti and P. J. Dyson, "Influence of elemental iodine on imidazolium-based ionic liquids: solution and solid-state effects" Inorg. Chem. 2015, 54, 10504–10512.
[29] Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen and X. Zhao, "Effect of lithium iodide addition on Poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell" J. Phys. Chem. B 2008, 112, 6594–6602.
[30] M. Pastore, E. Mosconi and F. D. Angelis, "Computational investigation of dye-iodine interactions in organic dye-sensitized solar cells" J. Phys. Chem. C, 2012, 116, 5965−5973.
[31] X. Ren, Q. Feng, G. Zhou, C. H. Huang and Z. S. Wang, "Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells" J. Phys. Chem. C 2010, 114, 7190–7195.
[32] Z. Sun, R. K. Zhang, H. H. Xie, H. Wang, M. Liang and S. Xue, "Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped Poly(ethylene oxide) electrolytes" J. Phys. Chem. C 2013, 117, 4364−4373.
[33] C. Renault, V. Balland, B. Limoges and C. Costentin, "Chronoabsorptometry to investigate conduction-band-mediated electron transfer in mesoporous TiO2 thin films" J. Phys. Chem. C 2015, 119, 14929−14937.
[34] S. Yanagida, Y. Yu and K. Manseki, "Iodine/iodide-free dye- sensitized solar cells" Acc. Chem. Res. 2009, 42, 1827–1838.
[35] M. P. Laurence, "Dye-sensitized nanocristalline solar cell" Phys. Chem. Chem. Phys. 2007, 9, 2630–2642.
[36] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, "Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells" J. Phys. Chem. C 2010, 114, 10612–10620.
[37] M. J. Katz, M. J. D. Vermeer, O. K. Farha, M. J. Pellin and J. T. Hupp, "Dynamics of back electron transfer in dye-sensitized solar cells featuring 4-tert-butyl-pyridine and atomic-layer-deposited alumina as surface modifiers" J. Phys. Chem. B 2015, 119, 7162–7169.
[38] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson and E. M. J. Johansson, "Experimental and theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells" ACS Appl. Mater. Interfaces 2018, 10, 11572–11579.
[39] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, "Synergistic effect of n-methylbenzimidazole and guanidinium thiocyanate on the performance of dye-sensitized solar cells based on ionic liquid electrolytes" J. Phys. Chem. C 2010, 114, 22330–22337.
[40] S. Adhikari, C. Biswas, M. H. Doan, S. T. Kim, C. Kulshreshtha and Y. H. Lee, "Minimizing trap charge density towards an ideal diode in graphene−silicon schottky solar cell" ACS Appl. Mater. Interfaces 2019, 11, 880–888.
[41] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, "Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells" Solar. Energ. Mat. Solar. C 2000, 64, 115–134.
[42] V. Gusak, E. Nkurunziza, C. Langhammer and B. Kasemo, "Real-time adsorption and desorption kinetics of dye Z907 on a flat mimic of dye-sensitized solar cell TiO2 photoelectrodes" J. Phys. Chem. C 2014, 118, 17116−17122.
[43] a) L. Xie, A. N. Cho, N. G. Park and K. Kim, "Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive" ACS Appl. Mater. Interfaces 2018, 10, 9390−9397; b) L. J. A. Koster, V. D. Mihailetchi, H. Xie and P. W. M. Blom, "Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells" Appl. Phys. Lett. 2005, 87, 203502−203505.
[44] M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. D. Boer and P. W. M. Blom "Effect of traps on the performance of bulk heterojunction organic solar cells" Appl. Phys. Lett. 2007, 91, 263505−263508.
[45] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy" J. Phys. Chem. B 1997, 101, 10281–10289.
[46] J. Kruger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, "Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy" J. Phys. Chem. B 2003, 107, 7536–7539.
[47] G. Schlichthorl, N. G. Park and A. J. Frank, "Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells" J. Phys. Chem. B. 1999, 103, 782–791.
[48] A. K. Chandiran, F. d. Sauvage, M. C. Cabanas, P. Comte, S. M. Zakeeruddin and M. Grätzel, "Doping a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells" J. Phys. Chem. C 2010, 114, 15849–15856.
[49] H. K. Dunn, L. M. Peter, S. J. Bingham, E. Maluta and A. B. Walker, "In situ detection of free and trapped electrons in dye-sensitized solar cells by photo-induced microwave reflectance Measurements" J. Phys. Chem. C 2012, 116, 22063−22072.
[50] J. Bisquert, A. Zaban and P. Salvador, "Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells nonequilibrium steady-state statistics and interfacial electron transfer via surface states" J. Phys. Chem. B 2002, 106, 8774–8782.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔