|
1. Katoria, D., Sehgal, D. & Kumar, S. Environment Impact Assessment of Coal Mining. Int. J. Environ. Eng. Manag. 4, 245–250 (2013). 2. Mamurekli, D. Environmental Impacts of Coal Mining and Coal Utilization in The UK. Acta Montan. Slovaca 15, 134–144 (2010). 3. Goswami, S. Impact of Coal Mining on Environment. Eur. Res. 92, 185–196 (2015). 4. Laney, A. S. & Weissman, D. N. Respiratory Diseases Caused by Coal Mine Dust. J. Occup. Environ. Med. 56, S18–S22 (2014). 5. Epstein, P. R. et al. Full Cost Accounting for The Life Cycle of Coal. Ann. N. Y. Acad. Sci. 1219, 73–98 (2011). 6. Wagner, H. Introduction to Wind Energy Systems. EPJ Web of Conferences, 148, 1–16 (2017). 7. Barros, M. T. L. et al. Optimization of Large-Scale Hydropower System Operations. Journal of Water Resource and Management, 178–188 (2003). 8. Alhamid, M. I., Daud, Y., Surachman, A. & Sugiyono, A. Potential of Geothermal Energy for Electricity Generation in Indonesia : A Review. Renew. Sustain. Energy Rev. 53, 733–740 (2020). 9. Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. & Bulović, V. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015). 10. Rwenyagila, E. R. Review Article A Review of Organic Photovoltaic Energy Source and Its. Int. J. Photoenergy 2017, 12 (2017). 11. Cook, A. G., Billman, L. & Adcock, R. Photovoltaic Fundamental. 1–68 (1995). 12. Luceño-Sánchez, J. A., Díez-Pascual, A. M. & Capilla, R. P. Materials for photovoltaics: State of art and recent developments. Int. J. Mol. Sci. 20, (2019). 13. Cao, W. & Xue, J. Recent Progress In Organic Photovoltaics: Device Architecture And Optical Design. Energy Environ. Sci. 7, 2123–2144 (2014). 14. Donor-acceptor, I. Internal Donor-Acceptor. Science (80-. ). 270, 1–3 (1995). 15. Hösel, M., Angmo, D. & Krebs, F. C. Organic solar cells (OSCs). Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications. Woodhead Publishing, (2013). 16. Scharber, M. C. & Sariciftci, N. S. Progress In Polymer Science Efficiency Of Bulk-Heterojunction Organic Solar Cells. Prog. Polym. Sci. 38, 1929–1940 (2013). 17. Govindan, V. Synthesis of Organic Molecules for Solar Cell Applications. (2019). 18. Sakai, J., Taima, T., Yamanari, T. & Saito, K. Solar Energy Materials & Solar Cells Annealing Effect In The Sexithiophene : C 70 Small Molecule Bulk Heterojunction Organic Photovoltaic Cells. Solar Energy Material & Solar Cells, 93, 1149–1153 (2009). 19. Wang, Z. et al. Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2 , 2 ′ -Bithiophene Central Cores. ACS Appl. Mater. Interfaces, 8, 11639-11648, (2016). 20. Yan, C. et al. Non-Fullerene Acceptors For Organic Solar Cells. Nat. Rev. Mater. 3, (2018). 21. Jiang, X., Xu, Y. Wang, X. Wu, Y., Feng., Li, C., Ma, W., Li, W. Non-Fullerene Organic Solar Cells Based On Diketopyrrolopyrrole Polymers As Electron Donors And ITIC As An Electron Acceptor. Phys. Chem. Chem. Phys, 19, 8069-8075, (2017). 22. Huo, Y. et al. Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chem. Mater. 30, 8661–8668 (2018). 23. Yang, L. et al. New Wide Band Gap Donor for Efficient Fullerene-Free All-Small- Molecule Organic Solar Cells. J. Am. Chem. Soc., 139, 5, 1958-1966, (2017). 24. Qu, J. et al. Alkyl Chain End Group Engineering of Small Molecule Acceptors for Non-Fullerene Organic Solar Cells. ACS Appl. Energy Mater. 1, 4724–4730 (2018). 25. Solares, C., Una, D. E. P. & Introducci, B. Perovskite Solar Cells : A Brief Introduction And Some Remarks. Rev. Cub. Fis.,34, 58, 58–68 (2017). 26. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic. J. Am. Chem. Soc. 131, 6050–6051 (2009). 27. Gao, X. P. A. Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. (2016). Nano Lett. 16, 12, 7925-7929. (2016) 28. Snaith, H. J. Perovskites : The Emergence of a New Era for Low-Cost , High-Efficiency Solar Cells. J. Phys. Chem. Lett., 4, 21, 3623-3630 (2013). 29. Jena, A. K., Numata, Y., Ikegami, M. & Miyasaka, T. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-Waste. J. Mater. Chem. A. 6, 2219–2230 (2018). 30. Wang, Y., Zhang, Y., Zhang, P. & Zhang, W. High Intrinsic Carrier Mobility And Photon Absorption In The Perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 11516–11520 (2015). 31. Song, T. et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A Mater. energy Sustain. 3, 9032–9050 (2015). 32. Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT : GO composite layer as a hole transport layer. Sci. Rep. 3–11 (2018). 33. Liu, X. et al. A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells. J. Phys. Chem. C 122, 26337–26343 (2018). 34. Cui, B. et al. Propeller-Shaped, Triarylamine-Rich, and Dopant-Free Hole-Transporting Materials for Efficient n–i–p Perovskite Solar Cells. ACS Appl. Mater. Interfaces 10, 41592–41598 (2018). 35. Salunke, J. et al. Phenothiazine-Based Hole-Transporting Materials toward Eco- friendly Perovskite Solar Cells ̃. ACS Appl. Energy Mater. 2, 5, 3021-3027, (2019). 36. Pavia, et. al. Introduction to Spectroscopy. (Thomson Learning, 2001).
|