(100.24.122.117) 您好!臺灣時間:2021/04/12 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭建育
研究生(外文):Kuo Chien-Yu
論文名稱:含聯噻唑的輔助配位基之釕錯合物的合成與其在染料敏化太陽能電池上的應用
指導教授:吳春桂吳春桂引用關係
指導教授(外文):Wu Chun-Guey
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:111
中文關鍵詞:釕金屬染料敏化太陽能電池
相關次數:
  • 被引用被引用:1
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池(dye-sensitized solar cells, DSCs)具低製造成本與高效率的室內弱光發電特性。本實驗室先前合成出含cycloruthenated sensitizers (DUY24−DUY27),並透過β-lowest unoccupied spin orbital (β-LUSO)分佈證明β-LUSO分佈在軟的硫原子,可以提高碘電解質與氧化態染料的作用能力,加快染料再生速率提高元件的光電轉換效率。本研究參考高光電轉換效率染料C101、C106及CYC-B20,將一個輔助配位基的bipyridine改為bithiazole,而β-LUSO分佈在thiazole之3號位置的硫原子,可以提高染料再生的速度,並且在thiazole接上2-(hexyl)thiophene、2 -(hexylthio) thiophene和5-(hexylthio)-ethylenedioxythiophene來增長輔助配位基的共軛長度,以增強染料在MLCT band的吸光強度,CYK系列染料的DMF溶液呈現深棕綠色,含bithiazole的CYK系列染料相對於含bipyridine的染料之MLCT最大吸收波長呈現紅位移(CYK17 : 560 nm, 紅移 7 nm;CYK18 : 597 nm, 紅移35 nm ; CYK19 : 580 nm, 紅移13 nm),有利染料吸收太陽光。
Dye-sensitized solar cells(DSCs) have low cost and high efficiency under dim-light condition. The laboratory previously synthesized cycloruthenated sensitizers (DUY24−DUY27) and proved that β-lowest unoccupied spin orbital distributes on the soft sulfur atom, which strengthens the interaction between the oxidized dye and iodide ion for efficient dye regeneration. The study refers to high efficiency dye C101、C106 and CYC-B20. We replaced the bipyridine of ancillary ligand with bithiazole, then use three cojugated moiety (2-(hexyl)thiophene、2 -(hexylthio) thiophene and 5-(hexylthio)-ethylenedioxythiophene) to attach on bithiazole. Increasing the conjugate length of the ancillary ligand to enhance the absorbance of the MLCT band. The color of CYK dye in DMF solution are brown green. The series of CYK dyes containing bithiazole exhibit red shift with respect to the dyes containing bipyridine. (CYK17 : 560 nm, red shift : 7 nm;CYK18 : 597 nm, red shift : 35 nm ; CYK19 : 580 nm, red shift : 13 nm).
Abstract ii
第一章 緒論 1
1-1、前言 1
1-2、太陽能電池的發展 1
1-3、染料敏化電池的工作原理 2
1-4、染料分子之設計探討 4
1-5、染料敏化電池在室內弱光環境有高的光電轉換 5
1-6、釕金屬錯合物染料(Ruthenium Metal Complex) 6
1-6-1、具代表性的釕金屬錯合物染料N3和N719 6
1-6-2、增長輔助配位基的共軛長度,來增加染料分子的吸光能力 8
1-1、 含噻唑(Thiazole)單元之化合物 10
1-7-1、含聯噻唑(Bithiazole)之有機染料 10
1-7-2、含聯噻唑(Bithiazole)之釕錯合物性質 11
1-7-3、含噻唑(Thiazole)之釕錯合物染料 13
1-8 研究動機 14
第二章 實驗部分 15
2-1、實驗藥品 15
2-2、中間產物之結構與簡稱 17
2-3、最終產物之結構與簡稱 19
2-4、實驗步驟 20
2-4-1、BTz-Br的合成,如圖2-1所示 20
2-4-2、Tz17的合成,如圖2-2所示 21
2-4-3、Tz18的合成,如圖2-3所示 24
2-4-4、Tz19的合成,如圖2-4所示 26
2-4-5、Tz20的合成,如圖2-5所示 29
2-5、儀器分析與樣品製備 41
第三章 結果與討論 45
3-1、合成相關探討 45
3-2、 CYK17、CYK18和CYK19之TBA form的光學性質探討 51
3-3 、CYK系列染料之COOTBA form和COOH form之染料系附量之討論
3-4 、比較輔助配位基含Thiazol與Pyrine染料之光學性質差 56
3-5、CYK17、CYK18及CYK19之COOH form分子前置軌域的理論計算 61
3-6、釕錯合物電化學性質與前置軌域位能的量測 64

3-7、以CYK17、CYK18及CYK19染料所敏化之DSC元件效 能的探討 69
第四章 結論 75
參考文獻
[1] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.-M. Zakeeruddin, J.-E. Moser, M. Grätzel and A. Hagfeldt, Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting, Nature Photonics, 2017, 11, 372-378
[2] 5G行動寬頻技術發展趨勢研究,財團法人電信技術中心,2015
[3] N. Sridhar and D. Freeman, A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking, Texas Instruments, 2011
[4] J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela and J. Samitier, A Multiharvested Self-Powered System in a Low-Voltage Low-Power Technology, IEEE, 2011, 58, 4250-4263
[5] www.trademag.org.tw/Upload/tam_tam/704756/染料敏化太陽能電池PDF檔.pdf ,201906
[6] A. Hagfeldt, G. Boschloo, L. sun, L. Kloo and H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 2010, 110, 6595-6663
[7] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C,-H. Ngocle, J.-D. Decoppet, S.-M. Zakeerddin, J.-H. Tsai, C. Grätzel, C.-G. Wu and M. Grätzel, Highly Efficient Light-Harvesting Ruthenium Sensitiizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano, 2009, 3, 3103-3109
[8] S. Mathew, A. Yelia, P. Gao, R.-H. Baker, B.-F. Curchod, N.-A. Astani, I. Tavemelli, U. Rothlisberrgerr, M.-K. Nazeeruddin and M. Grätzel, Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers, Nat. Chem., 2014, 6, 242-247
[9] Y.-T. Azar and M. Payami, Theoretical Description of Efficiency Enhancement in DSSCs Sensitized by Newly Synthesized Heteroleptic Ru Complexes., Chem. Phys., 2015, 17, 29574-29585
[10] M.-K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gräetzel, Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)Ruthenium Charge-Transfer Sensitizers (X=Cl-, Br-, I-, CN- and SCN-) on Nanocrystalline Titanium Dioxide Electrodes, J. Am. Chem. Soc., 1993, 115, 6382-6390
[11] M.-K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte and M. Gräetzel, A Swift Dye Uptake Procedure for Dye Sensitized Solar Cells, Chem. Comm., 2003, 16,1456-1457
[12] C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen and K.-C. Ho, A New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells, Adv. Mater., 2007, 19, 3888-3891.
[13] P. Wang, S.-M. Zakeeruddin, J.-E. Moser, M.-K. Nazeeruddin, T. Sekiguchi and M. Gräetzel, A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte, Nature Materrials, 2003, 2, 402-407
[14] 童永樑, 無曜杉, 盧明德, 染料敏化電池在物聯網的應用與未來,工業材料雜誌345期, 201509
[15] C.-Y. Chen, M.-K. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-H. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.-M. Zakeeruddin and M. Grätzel, Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, ACS Nano., 2009, 10, 3103-3109
[16] 陳昱裕,非對稱釕錯合物之輔助配位基和固著配位基的設計與合成應用於染料敏化太陽能電池,國立中央大學,2011
[17] F. Gao, Y. Wang, D. Shi, J. Zhang, M.-K. Wang, X.-Y. Jing, R. Humphry-Baker, P. Wang, S.-M. Zakeeruddin and M. Grätzel, Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells, J. Am. Chem. Soc., 2008, 130, 10720-10728
[18] Y. Cao, Y. Bai, Q.-J. Yu, Y.-M. Cheng, S. Liu, D. Shi, F.-F. Gao and P. Wang, Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine, J. Phys. Chem. C, 2009, 113, 6290-6297
[19] G. Orellana and M.-L. Quiroga, Spectroscopic Electrochemical and Kinetic Characterization of New Ruthenium(II) Tris‐chelates Containing Five‐Membered Heterocyclic Moieties, Helvetica Chimica Acta, 1987, 70, 2073-2082
[20] H.-T. Gao, M. Grätzel and M.-K. Nazeeruddin, Fine-Tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells, Org. Lett., 2012, 14, 4330-4333
[21] A. Colombo, C. Dragonetti, A. Valore, C. Coluccini, N. Manfredi and A. Abbotto, Thiocynate-Free Ruthenium 2,2’-bipyridyl Complexes for Dye-Sensitized Solar Cells, Polyhedron, 2014, 82, 50-56
[22] C.-H. Siu, C.-L. Ho, J. He, T. Chen, X.-N. Cui, J.-Z. Zhao, W.-Y. Wong, Thiocyanate-Free Ruthenium Cyclometalated Complexes Containing Uncommon Thiazole and Benzothiazole Chromophores for Dye-Sensitized Solar Cells, J. Organomet. Chem., 2013, 748, 75-83
[23] T.-D. Nguyen, Y.-P. Lan and C.-G. Wu, High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells, Inorg. Chem., 2018, 57, 1527−1534
[24] B.-L. Hayes, Recent Advances in Microwave Assisted Synthesis, Aldricchem. Aceta., 2004, 17, 65-67
[25] B. Liu, W.-H. Zhu, Q. Zhang, W.-J. Wu, M. Xu, Z.-J. Ning, Y.-S. Xie and H. Tian, Conveniently Synthesized Isophorone Dyes for High Efficiency Dye-Sensitized Solar Cells: Tuning Photovoltaic Performance by Structural Modification of Donor Group in Donor-Pi-Acceptor System, Chem. Commun., 2009, 34, 1766-1768
[26] W. Zhu, Y.-Z. Wu, S.-T. Wang, W.-Q. Li, X. Lin, J. Chen, Z.-S. Wang and H. Tian, Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response, Adv. Funct. Mater., 2011, 21, 756-763
[27] R. Jitchati1, Y. Thathong1and K. Wongkhan, A Cheap Synthetic Route to Commercial Ruthenium N3 Dye for Sensitizing Solar Cell Applications, Adv. Mater. Res., 2012, 488, 1049-1054
[28] 劉毓琪,應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討,國立中央大學,2018
[29] D.-L. Comins and S.-P. Joseph, Encyclopedia of Reagents for Organic Synthesis : N,N‐Dimethylformamide, John Wiley & Sons, Ltd, 2001
[30] D. Kikelj and U. Urleb, Science of Synthesis, Houben-Weyl, 2002, 11, 700-701
[31] J.-A. Riddick, W.-B. Bunger, T.-K. Sakano, Organic Solvents : Techniques of Chemistry, John Wiley and Sons, 1985, 2, 1325-1326
[32] M-K. Nazeeruddin, S.-M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer and M. Grätzel, Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)Ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania, Inorg. Chem., 1999, 38, 6298-6305
[33] P. Wang; S.-M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M.-K. Nazeeruddin and M. Grätzel, Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye‐Sensitized Solar Cells, Adv. Mater., 2004, 16, 1806-1815.
[34] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, A Ruthenium Complex with Superhigh Light‐Harvesting Capacity for Dye‐Sensitized Solar Cells, Angew. Chem., 2006, 45, 5822-5837
[35] W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang and H. Tian, Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response, Adv. Funct. Mater., 2011, 21, 55-71
[36] M.-K. Nazeeruddin, S.-M. Zakeeruddin, R. Humphry-Baker, S.-I. Goreslky, A.-B.-P. Lever and M. Grätzel, Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes, Chem. Rev., 2000, 100, 1479-1493
[37] H. Rensmo, S. Sodergren, L. Patthey, K. Westmark, L. Vayssieres, O. Khole, P.-A. Bruhwiler, A. Hagfeldt and H. Siegbahn, The Electronic Structure of the cis-bis(4,4’-dicarboxy-2,2’-bipyridine)-bis-(isothiocyanate)Ruthenium Complex and its Ligand 2,2’-bipyridyl-4,4’-dicarboxylic acid Studied with Electron Spectroscopy, Chem. Phys. Lett., 1997, 274, 51-57
[38] C. Daul, E.-J. Baerends and P. Vernooijs, A Density Functional Study of the MLCT States of [Ru(bpy)3]2+ in D3 Symmetry, Inorg. Chem., 1994, 33, 3538-3553
[39] J.-E. Monat, J.-H. Rodriguez and J.-K. McCusker, Ground and Excited State Electronic Structures of the Solar Cell Sensitizer Bis(4,4’-dicarboxylato-2,2’-bipyridine)bis(isothiocyanato)-Ruthenium, J. Phys. Chem. A, 2002, 106, 7399-7406
[40] C.-H. Chen, Y.-C. Hsu, H.-H. Chou, K.-R. Thomas, J.-T. Lin and C.-P. Hsu, Dipolar Compounds Containing Fluorene and a Heteroaromatic Ring as the Conjugating Bridge for High-Performance Dye-Sensitized Solar Cells, Chem. Eur. J., 2010, 16, 3184-3193
[41] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, Efficient Ruthenium Sensitizer with a Terpyridine Ligand Having a Hexylthiophene Unit for Dye-Sensitized Solar Cells, Eur. J. Inorg. Chem., 2014, 34, 4734-4739
[42] V.-V. Pavlishchuk and A.-W. Addison, Conversion Constants for Redox Potentials Measured Versus Different Reference Electrodes in Acetonitrile Solutions at 25℃, Inorg. Chem. Acta., 2000, 298, 97-102
[43] T.-D. Nguyen and C.-G. Wu, Non-Classical Design of High-Efficiency Sensitizers for Dye-Sensitized Solar Cells, J. Chin. Chem. Soc., 2018, 65, 511-522
電子全文 電子全文(網際網路公開日期:20210824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔