|
[1] Klionsky, DJ. (2008). Autophagy revisited: a conversation with Christian de Duve. Autophagy 4(6): 740–3. doi:10.4161/auto.6398. PMID 18567941. [2] "The Nobel Prize in Physiology or Medicine 2016". The Nobel Foundation. 3 October 2016. Retrieved 3 October 2016. [3] Ku, H., Liu, H., Hung, P., Chen, C., Liu, H., Chang, H., Tsuei, Y. , Shih, L., Lin, C., Lin, C. and Kao, Y. (2012). Green tea (–)‐epigallocatechin gallate inhibits IGF‐I and IGF‐II stimulation of 3T3‐L1 preadipocyte mitogenesis via the 67‐kDa laminin receptor, but not AMP‐activated protein kinase pathway. Mol. Nutr. Food Res. 56: 580-592. [4] Kim, H.-S., Montana, V., Jang, H.-J., Parpura, V., Kim, J. (2013). Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells: A POTENTIAL ROLE FOR REDUCING LIPID ACCUMULATION. The Journal of Biological Chemistry 288(31): 22693–22705. [5] Zhou, J., Farah, B. L., Sinha, R. A., Wu, Y., Singh, B. K., Bay, B.-H., Yen, P. M. (2014). Epigallocatechin-3-Gallate (EGCG), a Green Tea Polyphenol, Stimulates Hepatic Autophagy and Lipid Clearance. PLoS ONE, 9(1), e87161. [6] Kim, H.-S., Quon, M. J., & Kim, J. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology 2: 187–195. [7] Lee, J.-H. et al. (2015). EGCG-mediated autophagy flux has a neuroprotection effect via a class III histone deacetylase in primary neuron cells. Oncotarget, 6(12): 9701–9717. [8] Chen, Y., Huang, L., Zhang, H. et al. (2017). Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage. Mol Neurobiol 54:392. https://doi.org/10.1007/s12035-015-9629-9 [9] Liao, H., Xiao, YM., Yin, Z. et al. (2016). Inhibitory effect of epigallocatechin-3-gallate on bladder cancer cells via autophagy pathway. Int J Clin Exp Med 9(6): 9868–9878 [10] Li, W., et al. (2011). EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81(9): 1152–1163 [11] Li, S., et al. (2016). Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3. Drug Design, Development and Therapy 10: 631–647 [12] Ho, CT, et al. (1992). Antioxidative effect of polyphenol extract prepared from various Chinese teas. Preventive Medicine 21: 520–525. [13] Lin, JK., Lin-Shiao, SY. (2006). Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 50: 211–217 [14] Chacko, et al. (2010). Beneficial effects of green tea: a literature review. Chinese Medicine 5:13–22 [15] Hale, AN., Ledbetter, DJ., Gawriluk, TR., Rucker, EB. (2013). Autophagy regulation and role in development. Autophagy 9: 951–972 [16] Cohen, P., Spiegelman, BM. (2016). Cell biology of fat storage. Molecular Biology of the Cell 27: 2523–2527 [17] Solomon VR, Lee H. 2009. Chloroquine and its analog: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 625: 220–230 [18] Czaja MJ. (2010). Autophagy in health and disease: Regulation of lipid metabolism and stored by autophagy: pathophysiological implications. Am J Physiol Cell Physiol 298: C973-C978 [19] Salem M, Ammitzboell M, Seidelin J. B., Nielsen O. H., Nys K. (2015). ATG16L1: A multifunctional susceptibility factor in Crohn disease. Autophagy 11(4): 585–594 [20] Kim J, Kundu M, Viollet B, Guan KL. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132-41; PMID:21258367; http://dx.doi.org/10.1038/ncb2152 [21] Mizushima N, Yoshimori T. (2007). How to interpret LC3 immunoblotting. Autophagy 3:542-5; PMID: 17611390; http://dx.doi.org/10.4161/auto. 4600 [22] Thorburn, A. (2014). Autophagy and Its Effects: Making Sense of Double-Edged Swords. PLoS Biol 12(10): e1001967. doi:10.1371/journal.pbio.1001967 [23] Irimie, A.I., et al. (2015). Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. OncoTargets and Therapy 8: 461–470 [24] Mao, K., Klionsky, DJ. (2011). AMPK Activates Autophagy by Phosphorylating ULK1. Circ Res. 108(7): 787–788. doi:10.1161/RES.0b013e3182194c29 [25] Cichello, S., Liu, P., Jois, M., (2013). The anti-obesity effects of EGCG in relation to oxidative stress and air-pollution in China. Nat. Prod. Bioprospect. 3: 256–266. doi: 10.1007/s13659-013-0060-5 [26] Singh, R. et al. (2009). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest 119(11): 3329–3339. doi:10.1172/JCI39228 [27] Yang, YP., et al. (2013). Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacologica Sinica 34:625 – 635. doi: 10.1038/aps.2013.5 [28] Wang, C., Chang, H., Hsiao, C., Lee, M., Ku, H., Hu, Y. and Kao, Y. (2009), The effects of green tea (–)‐epigallocatechin‐3‐gallate on reactive oxygen species in 3T3‐L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol. Nutr. Food Res., 53: 349-360 [29] Kao, YH., Hiipakka, RA., Liao, S. (2000). Modulation of Endocrine Systems and Food Intake by Green Tea Epigallocatechin Gallate, Endocrinology, 141(3), 980–987, https://doi.org/10.1210/endo.141.3.7368 [30] Barth, S., Glick, D., Macleod, KF. (2010). Autophagy: assays and artifacts. J Pathol., 221(2): 117–124. doi:10.1002/path.2694 [31] Satoh, M., Takemoyrra, Y., Hamada, H., Sekido, Y., and Kubota, S. (2013). EGCG induces human mesothelioma cell death by inducing reactive oxygen species and autophagy. Cancer Cell Int., 13,19 [32] Fitzwalter, BE., Thorburn, A. (2015). Recent insights into cell death and autophagy. FEBS journal 282: 4279–4288. doi:10.1111/febs.13515 [33] Wu, YT., Tan, HL, et al. (2010). Dual role of 3-Methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III Phosphoinositide-3-Kinase. The Journal of Biological Chemistry, 285(14): 10850-10861 [34] Heckmann, BL., Yang, X., Zhang, X., Liu, J. (2013). The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. British Journal of Pharmacology, 168:163–171. doi:10.1111/j.1476-5381.2012.02110.x [35] Verschooten, L., Barrette, K., Kelst, SV., et al. (2012). Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLOS One, 7(10): e48264 [36] Roach, PJ. (2011). AMPK ULK1 Autophagy. Molecular and Cellular Biology, 31(15): 3082–3084. doi:10.1128/MCB.05565-11 [37] Zhao, M., and Klionsky, DJ. (2011). AMPK-dependent phosphorylation ULK1 induces autophagy. Cell Metab. 13:119–120 23 [38] Lopez, NM., Athonvarangkul, D., Mishall, P., Sahu, S., Singh, R. (2013). Autophagy proteins regulate ERK phosphorylation. Nature communication, 4:2799. doi:10.1038/ncomms3799 [39] Hung, PF., Wu, BT., et al. (2005). Antimitogenis effect of green tea (–)-egigallocatechin gallate on 3T3-L1 preadipocytes depends on ERK and Cdk2 pathways. Am J Physiol Cell Physiol, 288: C1094–C1108. doi:10.1152/ajpcell.00569.2004 [40] Ku, HC., Chang, HH., et al. (2009). Green tea (–)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 297: C121-C132. doi:10.1152/ajpcell.00272.2008 [41] Wang, RC., et al. (2012). Akt-mediated regulation of autophagy and tumorigenesis through Beclin-1 phosphorylation. Science 338: 956–959. doi: 10.1126/science.1225967
|