跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳家榮
研究生(外文):Jia-Rong Wu
論文名稱:蛋白質法尼脂化修飾參與植株耐熱反應
論文名稱(外文):The study of protein farnesylation on plant heat stress responses
指導教授:吳少傑
指導教授(外文):Shaw-Jye Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:HIT5ERA1熱逆境蛋白質法尼脂化修飾AtDjA2AtDjA3
外文關鍵詞:HEAT-INTOLERANT 5 (HIT5)ERA1heat stressprotein farnesylationAtDjA2AtDjA3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年由於溫室效應的影響,導致全球氣溫逐年攀升。植物由於無法自由遷徙,因而必須時刻面對全球暖化所帶來高溫逆境。此外,植物是人類主要糧食來源,在畜牧業也被用作飼料。是以當高溫逆境對作物的生長造成不利的影響,進而使得產量下降時,勢必也會衝擊到人類的生存繁衍。因此,瞭解植物如何抵禦高溫,進而提升作物對高溫的耐受能力,便有其重要性與迫切性。
我們以前向式遺傳學(forward genetic approach)的策略,藉由篩選熱敏感型的突變株,配合基因定位的技術,找尋植物中熱反應相關的基因,並進一步探討此基因如何保護植物的耐熱機轉,期望藉此找尋提升作物耐熱能力的方法。利用此方式,我們篩選到一株帶有熱反應性狀的突變株,將其命名為hit5 (heat intolerance 5),此突變株對於兩種不同形式的熱逆境處理:長時間溫和高溫(prolonged heat stress)以及短時間高強度高溫(heat shock stress)有著不同的反應性狀,相對於野生型植株,對長時間溫和高溫處理失去耐受能力,然而對短時間高強度高溫處理卻具有更佳的耐受能力。根據實驗結果顯示,造成hit5突變株兩種熱反應性狀為同一個隱性基因突變造成,突變點位置位於第五條染色體At5G40280基因(或稱為ERA1, enhanced responses to ABA 1)上,造成此基因mRNA的剪切(splicing)發生缺失,因而失去正常功能。此基因編譯的蛋白質已知為法尼脂轉移酶β次單元(farnesyltransferase β subunit) ,因此hit5突變株的熱反應性狀指出了植物對於熱逆境反應的調控也發生在轉譯後修飾的部分。過去的文獻指出,hit5/era1基因的突變,會使得植株對植物賀爾蒙abscisic acid (ABA)敏感,因而推測HIT5/ERA1的法尼脂化修飾會負調控ABA訊號傳遞中的某傳訊因子。而ABA過去普遍被認為是植物逆境賀爾蒙,因此我們探討了蛋白質的法尼脂化修飾,在植物耐熱機制中所扮演的角色以及與植物賀爾蒙ABA之間是否有相互調節的關係。此外,由於hit5突變株對長時間溫和高溫以及短時間高強度高溫有著不同的反應性狀,因此推測至少有兩個以上的訊息傳遞路徑,受到法尼脂化修飾的調控。這些不同的訊息調控路徑以及參與其中的分子,是我們接續要找尋及探討的目標。根據過去文獻結果,我們鎖定兩個可能參與在其中的蛋白質AtDjA2 (At5g22060)與AtDjA3 (At3g44110),並探究其在HIT5蛋白質所調控的熱反應機制中。
Heat stress from global warming has serious impacts on living organisms. Because plants are sessile organisms, they have to face the adverse effects from high temperatures which can directly influence the properties of various cellular components, even leading to cell death. Therefore, it is important to investigate the plant heat tolerance mechanisms for improving the crop resistance to high temperature. In this study, I used a forward genetic approach to screen the heat intolerant mutants of Arabidopsis to find heat stress tolerant genes in plants. The heat-intolerant 5 (hit5) was therefore isolated. This mutant exhibits two different heat response phenotypes: sensitive to prolonged heat stress but tolerance to sudden heat shock stress compared to wild type. Subsequent gene mapping identified that HIT5 is the ENHANCED RESPONSE to ABA 1 (ERA1) gene which encodes the β subunit of protein farnesyltransferase. This finding demonstrated that the plant heat stress responses (HSRs) also involve in post-translational modification. Previous studies have indicated the hit5/era1 mutant is hypersensitive to abscisic acid (ABA). In my study, I investigated the relationship between protein farnesylation, plant thermotolerance, and ABA regulation. Results indicated that the hit5/era1 mediated heat stress responses is ABA independent. Meanwhile, according to previous reports, Arabidopsis AtDjA2 (At5g22060) and AtDjA3 (At3g44110) are HIT5/ERA1 substrates. There potential roles in protein farnesylation mediated heat stress responses were studied as well.
中文摘要 i
Abstract iii
誌謝 iv
Table of contents v
List of figures vi
List of tables viii
Introduction 1
Background 5
Materials and Methods 8
Results 16
Discussion 24
References 31
Al-Whaibi MH. (2011) Plant heat-shock proteins: A mini review. Journal of King Saud University-Science 23: 139-150.

Barghetti A, Siögren L, Floris M, Paredes EB, Wenkel S, Barodersen P. (2017) Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Gene & Development 31: 1-14.

Baniwal SK, Bhart K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishr SK, Nover L, Port M, Scharf KD, Tripp J, Weber C. (2004) Heat stress response in plants: a complex game with chaperone and more than twenty heat stress transcription factor. Journal of Biosciences 29: 471-487.

Bita CE, and Gerats T. (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Science 4.

Bell CJ, Ecker JR. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137-144.

Bokszczanin KL, SPOT-ITN Consortium, Fragkostefanakis S. (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers Plant Science 4 (315): 1-20.


Caplan AJ, Tsai J, Casey PJ, Douglas MG. (1992) Farnesylation of YDJ1p is required for function at elevated growth temperature in Saccharomyces cerevisiae. The Journal of Biological Chemistry 267: 18890-18895.

Charng YY, Liu HC, Liu NY, Chi WT, Wng CN, Chang SH, Wang TT. (2007) A heat–inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143: 251-262.

Clough SJ, Bent AF. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735-743.

Culter S, Ghassemian M, Bonetta D, Cooney S, Mccourt P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239-1241.

Crowell DN, Huizinga DH. (2009) Protein isoprenylation: the fat of the matter. Trends in Plant Science 14: 163-170.

Fujita Y, Fujita M, Shinonaka K, Yamaguchi-Shinozaki K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research 124:509-525.

Galichet A, and Gruissem W. (2003) Protein farnesylation in plants- conserved mechanisms but different targets. Current opinion in plant biology 6:530-535.

Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. (1992) Isolation of Arabidospsis ABI3 gene by positional cloning. The Plant Cell 4: 1251-1261.

Goritschnig S., Weihmann T., Zhang Y., Fobert P., McCourt P., Li X. (2008) A novel role for protein farnesylation in plant innate immunity. Plant Physiology 148: 348-357.

Grover A, Mittal D, Negi M, Lavania D. (2013) Generating high temperature tolerance transgenic plants: achievements and challenges. Plant Science 205: 38-47.

Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, Kim KJ, Kwon CS, Paek KH. (2006) Tobacco Tsip 1, a DanJ-type Zn finger protein, is recruited to and potentiates Tsi 1-mediated transcriptional activation. Plant Cell 18: 2005-2020.

Hong SW, Vierling E. (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceedings of the National Academy of Sciences 97: 4392-4397.

Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF. (2012). Signal transduction during cold, salt, and drought stress in plants. Molecular Biology Reports 39: 969-987.

Huizinga DH, Omosegbon O, Omery B, Crowell DN. (2008) Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. The Plant Cell 20: 2714-2728.
Hu C., Lin SY., Chi WT., Charng YY. (2012) Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiology 158: 747-758.

Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, LastRL. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiology 129: 440-450.

Kampinga HH, Craig EA. (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews Molecular cell biology 11: 579-592.

Konieczny A, Ausubel F. (1993) A procedure for quick mapping of Arabidopsis mutants using ecotype-specific markers. The Plant Journal: 4: 403-410.

Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. (2007a) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. The Plant Cell 19: 182-195.

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD. (2007b) Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10: 310-316.

Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B. (2011) A framework integrating plant growth with hormones and nutrients. Trends in Plant Science 16: 178-182
Kumar SV, Wigge PA. (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: 136-147.

Larkindale J, Hall JD, Knight MR, Vierling E. (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathway in the acquisition of thermotolerance. Plant Physiology 138: 882-897.

Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proceedings of the National Academy of Science, USA: 88: 2874-2878.

Liu J, Sun N, Liu M, Liu J, Du B, Wang X, Qi X. (2013) An autoregulatory loop controlling Arabidopsis HsfA2 expression: Role of heat shock-induced alternative splicing. Plant Physiology 162: 512-521.

McLellan CA, Turbyville TJ, Wikeratne EMK, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AAL. (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance thought production of HSP90 inhibitor. Plant Physiology 145: 174-182.

Mishkind M, Vermeer JE, Darwish E, Munnik T. (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at plasma membrane and nucleus. The Plant Journal 60: 10-21.

Mittler R, Finka A, and Goloubinoff P. (2012). How do plants feel the heat? Trends Biochem. Sci. 37:118-125.
Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U, Junker A, Weisshaar B, Conard U, Bäumlein H, Altschmied L. (2012) Toward the identification and regulation of Arabidopsis thaniliana ABI3 regulon. Nucleic Acid Research 40: 8240-8254.

Muñoz A, Castellano MM. (2012). Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among eukaryotes? Comparative and Functional Genomics. Article ID 406357. Doi: 10.1155/2012/406357.

Pei ZM. Ghassemian M, Kwak CM, McCourt P, Schoreder JI. (1998) Role of Farnesyltransferase in ABA Regulation of guard cell anion channels and plant water Loss. Science 282: 287-290.

Pulido P, Leister D. (2018) Novel DnaJ-related proteins in Arabidopsis thaliana. New Phytologist 217: 480-490.

Qu AL, Ding YF, Jiang Q, Zhu C. (2013) Molecular mechanisms of plant heat stress response. Biochemical and Biophysical Research Communications 432: 203-207.

Queitsch C, Hong SW, Vierling E, Lindquist. (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12: 479-492.

Ramos CH, Cyr DM. (2015) Specification of Hsp70 function by type I and type II Hsp40. Subcellular Biochemistry 78: 91-102.

Rajan VBV., and D’Silva. (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9: 433-446.

Rossel JB, Wilson IW, Progson BJ. (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiology 130: 1109-1120.

Running MP. (2014) The role of lipid post-translational modification in plant developmental process. Frontiers in Plant Science 5:50.

Sable A, Agarwal SK. (2018) Plant heat shock protein families: essential machinery for development and defense. Journal of Biological Sciences and Medicine 4: 51-64.

Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y, Maathuis F. (2009) The heat shock response in moss plant is regulated by specific calcium-permeable channels in the plasma membrane. The Plant Cell 21: 2829-2843.

Saidi Y, Peter M, Finka A, Cicekli C, Laszlo V, Goloubinoff P. (2010) Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signaling & Behavior 5: 1530-1533.

Saidi Y, Finka A, Goloubinoff P. (2011) Heat perception and signaling in plants: a tortuous path to thermotolerance. New Phytologist 190: 556-565.

Salas-Muñoz S, Rodríguez-Hernández AA, Ortega-Amaro MA, Salazar-Badillo, FB, & Jiménez-Bremont JF. (2016). Arabidopsis AtDjA3 Null Mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Frontiers in Plant Science 7:220

Sangwan V, Örvar BL, Beyerly J, Hirt H, Dhindsa RS. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathway. The Plant Journal 31: 629-638.

Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JAD. (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiology 114: 161-166.

Schöffl F, Prändl R, Reindl A. (1998) Regulation of the heat shock response. Plant Physiology 117: 1135-1141.

Scharf KD, Berberich T, Ebersberger I, Nover L. (2012) The plant heat stress transcription factor (Hsf) family: structure, function, and evolution. Biochimica et Biophysica Acta 1819: 104-118.

Sebi SM. (2005) Protein farnesylation: impalications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7: 297-300.

Shen L, Kang YG, Liu L, Yu H. (2011). The J-Domain protein J3 mediates the integration of flowering signals in Arabidopsis. The Plant Cell 23: 499-514.

Shen M, Pan P, Li Y, Li D, Yu H, Hou T. (2015) Farnesyltransferase and geranylgeranyltransferase I: structures, mechanism, inhibitors, and molecular modeling. Drug Discovery Today 20: 267-276.
Sugio A, Dreos R, Aparicio F, Maule AJ. (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. The Plant Cell 21: 642-654.

Suri S, and Dhindsa R. (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant, Cell and Environment 31: 218-226.

Suzuki N, Miller G, Morales J, Shulaev V. (2011) Respiratory brust oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14: 691-699.

Uchida T, Kanemori M. (2018) Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. The Journal of Biochemistry 164: 153-163.

Volkov RA, Panchuk II, Mullineaux PM, Schöffl AF. (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. The Plant Molecular Biology 61: 733-746.

Wahid A, Gelani S, Ashraf M, Foolad MR. (2007) Heat tolerance in plants: an overview. Environmental and Experimental Botany 61: 199-233.

Wang W, Vinocur B, Shoseyov O, Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9: 244-252.

Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. (2008) Transcriptome analysis show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology 148: 1201-1211.

Wang LC, Tsai MJ, Chang KY, Fan YS, Yeh CH, Wu SJ. (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62: 3609-3612.

Wang LC, Wu JR, Chang WL, Yeh CH, Ke YT, Lu CA, Wu SJ. (2013). Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Journal of Experimental Botany 64: 1689-1701.

Wu Y, Li J, Jin Z, Fu Z, Sha B. (2005) The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 revels novel dimerization motif for Hsp40. Journal of Molecular Biology 346: 1005-1011.

Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS. (2009) Tape-Arabidopsis sandwich – a simple Arabidopsis protoplast isolation method. Plant Methods 5: 16.

Xiong L, Ishitani M, Lee H, Zhu JK. (2001) The Arabidopsis LOS/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063-2083.

Yàngüez E, Castro-Sanz AB, Fernàndez-Batista N, Oliveros JC, Castellano MM. (2013) Analysis of genome-wide change in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS ONE 8(8): e71425.
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöz F, Shinozaki K, Yamaguchi-Shinozaki K. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Gentics and Genomics 286: 321-332.

Yoo SD, Cho YH, Sheen J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572.

Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY. (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiology 149: 1773-1784.

Zhou R, Kroczyñska B, Miernyk JA. (2000) Expression of the Arabidopsis thaliana AtJ2 cochaperone protein in Pichia pastoris. Protein Expression and Purification 19: 153-258.

Zhu JK, Bressan RA, Hasegawa PM. (1993) Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90: 8557-8561.

Zupanska AK, Denison FC, Ferl RJ, Paul AL. (2013) Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. America Journal of Botany 100: 235-248.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top