|
1. Centers for Disease Control and Prevention. National hospital discharge survey: 2010 table, procedures by selected patient characteristics. Centers for Disease Control and Prevention. 2013. 2. Singh JA, Sperling JW, Schleck C, Harmsen W, and Cofield RH. Periprosthetic infections after shoulder hemiarthroplasty. J. Shoulder Elbow Surg. 2012. 21(10): p. 1304–1309. 3. Van de Sande MA, Brand R, and Rozing PM. Indications, complications,and results of shoulder arthroplasty. Scand. J. Rheumatol. 2006. 35: p. 426–434. 4. Bengtson S, and Knutson K. The infected knee arthroplasty: A 6-year follow-up of 357 cases. Original Article. 1991. 62: p. 301–311. 5. Hsieh PH, Lee MS, Hsu KY, Chang YH, Shih HN, and Ueng SW. Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin. Infect. 2009. 49(7): p.1036–1043. http://dx.doi.org/10.1086/605593. 6. 衛生福利部中央健保險署. 健保署與醫界合作推動「人工關節登錄制度」,共同守護民眾就醫安全. 2016. 7. 衛生福利部中央健保險署. 全民健康保險醫療品質資訊公開網 8. Kurtz SM, Lau E, Watson H, Schmier JK, and Parvizi J. Economic burden of periprosthetic joint infection in the United States. J. Arthroplasty. 2012. 27(8): p. 61–65. 9. Peel TN, Dowsey MM, Buising KL, Liew D, and Choong PF. Cost analysis of debridement and retention for management of prosthetic joint infection. Clin. Microbiol. Infect. 2013. 19: p. 181–186. 10. 長庚紀念醫院關節重建骨科. 人工關節感染的處理. 11. Aaron J. Tande, and Robin Patel. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014. P.302–345. doi: 10.1128/CMR.00111-13 [PubMed] 12. Tsukayama DT, Estrada R, and Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J. Bone Joint Surg. Am. 1996. 78: p. 512–523. [PubMed] 13. Ta-Wei, and Tai MD. 2018. 人工關節感染,急性慢性不一樣. 14. Filip Gemmel, Hans Van den Wyngaert, Charito Love, M. M. Welling, Paul Gemme, and Christopher J. Palestro. Prosthetic joint infections: radionuclide state-of-the-art imaging. Section of Nuclear Medicine. 2012. 39: p. 892–909. 15. Lewis SS, Dicks KV, Chen LF, et al: Delay in diagnosis of invasive surgical site infections following knee arthropla ast versus hip arthroplasty. Clin. Infect. Dis. 2015. 60: p. 990-996. 16. For example, metronidazole: Metronidazole. The American Society of Health-System Pharmacists. Retrieved 31 July 2015. 17. Jian Wang, James D. MacNeil, and Jack F. Kay. Antibiotics: groups and properties. Chemical Analysis of Antibiotic Residues in Food. 2012.1: p. 1–60. 18. General Background: Antibiotic Agents. Alliance for the Prudent Use of Antibiotics. Retrieved 21 December 2014. 19. Antibiotics being incorrectly prescribed in Australian nursing homes. Prompting superbug fears. ABC Australia. 10 June 2016. 20. Megan Brooks. Public Confused About Antibiotic Resistance, WHO Says. Medscape Multispeciality. Retrieved 21 November 2015. 21. Antimicrobial resistance: global report on surveillance. The World Health Organization. April 2014. ISBN 978 92 4 156474 8. 22. Leekha S, Terrell CL, and Edson RS. General principles of antimicrobial therapy. Mayo. Clinic. Proceedings. 2011. 86 (2): p. 156–67. 23. Pangilinan R, Tice A, and Tillotson G. Topical antibiotic treatment for uncomplicated skin and skin structure infections: review of the literature. Expert Review of Anti-Infective Therapy. 2014. 7 (8): p. 957–965. 24. Lipsky BA, and Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clinical Infectious Diseases. 2009. 49 (10):p. 1541–1549. 25. Heal CF, Banks JL, Lepper PD, Kontopantelis E, and van Driel ML, Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. The Cochrane Database of Systematic Reviews. 2016. 11 (11): CD011426. 26. AA Chohan, Understand Debridement Before You Regret – Why you Need Debridement. Health and Fitmess. 2018. 27. TW. Hakkarainen, NM Kopari, TN. Pham, and HL Evans. Necrotizing soft tissue infections: review and current concepts in treatment, systems of care, and outcomes. Current Problems in Surgery. 2014. 51(8): p. 344–362. 28. Wound Healing and Management Node Group. Wound Management: Debridement – Autolytic. Wound Practice and Research. 2013. 21 (2): p. 94–95. 29. V Langer, P.S. Bhandari, S. Rajagopalan, and M.K. Mukherjee. Enzymatic debridement of large burn wounds with papain–urea: Is it safe? Medical Journal Armed Forces India. 2013. 69 (2): p. 144–150. 30. Choosing Wisely Five Things Physicians and Patients Should Question. ABIM Foundation. April 4, 2012. 31. L. Mazzucchelli, F. Rosso, A. Marmotti, D.E. Bonasia, M. Bruzzone, and R. Rossi. The use of spacers (static and mobile) in infection knee arthroplasty. Current Reviews in Musculoskeletal Medicine. 2015. 8 (4): p. 373–382. 32. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR: Photodynamic therapy for infections: clinical applications. Laser Surg. Med. 2011. 43: p. 755-767. 33. R. R. Allison and K. Moghissi, Photodynamic Therapy (PDT): PDT Mechanisms. Clin. Endosc. 2013. 46(1): p. 24–29. 34. Malik Z, Ladan H, and Nitzan Y. Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photoch. Photobio. B. 1992. 14: p. 262-266. 35. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, and Brown SB. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Ch. 2000. 44: p.522-527. 36. Nitzan Y, Gutterman M, Malik Z, and Ehrenberg B: Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem and photobiol. 1992. 55: p. 89-96. 37. Valduga G, Bertoloni G, Reddi E, Jori G: Effect of extracellularly generated singlet oxygen on gram-positive and gram-negative bacteria. J Photoch Photobio B. 1993. 21: p. 81-86. 38. Jori G, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, and G. Roncucci. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med. 2006. 38: p.468-481. 39. Gad F, Zahra T, Hasan T, and Hamblin MR. Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria. Antimicrob. Agents Chemother. 2004. 48(6): p. 2173–2178. [PubMed: 15155218] 40. TANG Yan, QIU Zhi-Yue, XU Zhuo-Bin, GAO Li-Zeng. Antibacterial Mechanism and Applications of Nanozymes. Progress in Biochemistry and Biophysics. 2018, 45(2): p. 118-128. 41. 周毅生, 香港中成藥註冊檢測方法及技術參考指南. 現代化中醫藥國際協會. 2016: p.71-79. 42. 莊梓傑, 食物中的生物危害:致病細菌(下篇). 食物安全焦點-食物安全平台. 2008. 8(25). 43. Tong, L., Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei and J.‐X. Cheng, Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced materials (Deerfield Beach, Fla.). 2007.19: p 3136-3141. 44. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess. The cellular and molecular basis of hyperthermia. Critical Reviews Oncology / Hematology. 43(1): p. 33-56. 45. Dolan EB, Haugh MG, Tallon D, Casey C, and McNamara LM. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. Journal of The Royal Society Interface. 2012. 9: p. 3503–3513. 46. J. Marx, R. Hockberger, and R. W. Rosen's. Emergency Medicine - Concepts and Clinical Practice. Elsevier. 2013; p. 2239. 47. 維基百科, 熱療. 2018; Available from:https://zh.wikipedia.org/wiki/%E7%86%B1%E7%99%82 48. 廖文炫, 張梅蘭, 蔡美文, 王淑芬. 物理因子治療學:冷、熱、光、水療及機械性治療. 2002. 臺北:合記. 49. Mark Dutton. Physical Therapist Assistant Exam Review Guide. Jones & Bartlett Publishers. Retrieved 14 November 2012. p. 468–. ISBN 978-0-7637-9757-7. 50. P.R. Murray, K.S. Rosenthal, and M.A. Pfaller. Medical Microbiology. Elsevier. 2016. 51. Mogana Das Murtey and Patchamuthu Ramasamy. Staphylococcus aureus SEM .From Wikimedia Commons, the free media repository.2016. 52. M.M. Dinges, P. M. Orwin, and P. M. Schlievert. Exotoxins of Staphylococcus aureus. Clinical Microbiol Reviews. 2000. 13(1): p. 16–34. 53. Winn, and Washington. Koneman's color atlas and textbook of diagnostic microbiology. Philadelphia: Lippincott Williams & Wilkins. 2006. ISBN 0781730147. 54. A.L. Gillen, J. Conrad, and M. Cargill. The Genesis and Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA): An Example of Evolution in Action? Faculty Publications and Presentations. 2015;p. 119. 55. A. Giombini, V. Giovannini, A.D. Cesare, P. Pacetti, N. Ichinoseki-Sekine, M. Shiraishi, H. Naito, and N. Maffulli. Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. British Medical Bulletin. 2007. 83: p. 379–96. doi:10.1093/bmb/ldm020. PMID 17942453. 56. Yamada K, Inuzuka K, Tatsumi N, et al, Evaluation of selection media for the detection of borderline MRSA. Journal of Infection and Chemotherapy. 2010; 16: p. 19-24. 57. Sakai H, Procop GW, Kobayashi N, Togawa D, Wilson DA, Borden L, Krebs V, and Bauer TW. Simultaneous detection of Staphylococcus aureus and coagulase-negative staphylococci in positive blood cultures by real-time PCR with two fluorescence resonance energy transfer probe sets. Journal of Clinical Microbiology. 2004. 42: p. 5739-5744. 58. Biofilm Engineering Research Group. SEM image of biofilm developed by MRSA strain derived from infected catheter. University of Calgary. 59. P. S. Stewart, J. W. Costerton, Antibiotic resistance of bacteria in biofilms. Lancet. 2001. 358: p. 135-138. 60. Wikipedia. Biofilm id.JPG. 2010. Available from: https://id.m.wikipedia.org/wiki/Berkas: Biofilm_id.JPG. 61. R. M. Donlan, Biofilms and device-associated infections. Emerging Infectious Diseases. Vol. 7, No. 2 (2001). 62. J.B. Kaplan, Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research. 2010. 90: p. 205-218. 63. C. Giraudeau, et al., Indocyanine green: photosensitizer or chromophore? Still a debate. Curr. Med. Chem. 2014. 21: p. 1871–1897. 64. Saxena V, Sadoqi M, and Shao J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 2003. 92: p. 2090–2097. 65. Jie Yu, Mohammad A. Yaseen, Bahman Anvari, and Michael S. Wong, Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chemistry of materials. 2007.19(6): p. 1277-1284. 66. R.C. Benson, and H.A. Kues, Fluorescence properties of indocyanine green as related to angiography. Phys Med. Biol. 1978. 23(1): p.159-163. 67. W. S. Kuo, Y. T. Chang, K. C. Cho, K. C. Chiu, C. H. Lien, C. S. Yeh and S. J. Chen. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy, Biomaterials. 2012. 33(11): 3270-3278. [68] Zonghai Sheng, Dehong Hu, Miaomiao Xue, Meng He, Ping Gong, Lintao Cai, Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 2013. 5(3): p. 145-150. 69. L. Larush and S. Magdassi, Formation of near-infrared fluorescent nanoparticles for medical imaging, Nanomedicine. 2011. 6(2): p. 233-240. 70. T. Desmettre, J.M. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology, 2000. 45(1): p. 15-27. 71. Rifampin. The American Society of Health-System Pharmacists. 2018. 72. P. Sensi, History of the development of rifampin. Reviews of Infectious Diseases. 1983. 5(3): p. 402–406. 73. Oxford handbook of infectious diseases and microbiology. OUP Oxford. 2009. p. 56. ISBN 978-0-19-103962-1. 74. Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG, Adjunctive use of rifampicin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Archives of Internal Medicine. 2008. 168 (8): p. 805–819. 75. S. Srinivasan, R. Manchanda, Tingjun L., A. Nagesetti, Alicia Fernandez-Fernandez, and Anthony J. McGoron. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents – an in vitro study. Journal of Photochemistry and Photobiology B: Biology. 2014. 136: p. 81-90. 76. Hirenkumar K. Makadia, and Steven J. Siegel. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Open Access Polymers. 2011. 3(3): p. 1377-1397. 77. Elisabeth Vey, Caroline Rodger, Jonathan Booth, Mike Claybourn, Aline F. Miller , and Alberto Saiani, Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polymer Degradation and Stability. 2011. 96,: p. 1882-1889. 78. Anderson JM, Shive MS, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews. 2012. 64: p. 72-82. 79. Houchin M, and Topp E. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. Journal of pharmaceutical sciences. 2008; 97(7): p. 2395-2404. 80. D. Klose, F. Siepmann, K. Elkharraz, and J. Siepmann. PLGA-based drug delivery systems: importance of the type of drug and device geometry. International journal of pharmaceutics. 2008; 354(1): p. 95-103. 81. K. Hirota , T. Hasegawa , T. Nakajima , H. Inagawa , C. Kohchi , G. Soma , K. Makino , and H. Terada. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. Journal of Controlled Release. 2010. 142: p. 339-346. 82. Taylor E, and Webster TJ. Reducing infections through nanotechnology and nanoparticles. International Journal of Nanomedicine. 2011. 6: p. 1463-1473 83. Wim H De Jong, and Paul JA Borm. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine. 2008. 3(2): p. 133–149. 84. Bae KH, Mok H, and Park TG. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials. 2008. 29(23): p. 3376-83. 85. Deepika M. An Overview on Nanoparticles. Research & Reviews: Journal of Pharmaceutics and Nanotechnology. 2015. 86. Ibrahim Yildiz, Applications of magnetic nanoparticles in biomedical separation and purification. Nanotechnology Reviews. 2015. 5(3): p. 331–340. 87. Marin Tadic, Slavko Kralj, Marko Jagodic, Hanzel Marko, and Makovec Darko. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Applied Surface Science. 2014. 322: p. 255–264. 88. Annie-Louise Robson, Paul C. Dastoor, Jamie Flynn, William Palmer, Antony Martin, Doug W. Smith1, Ameha Woldu, and Susan Hua. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology. Frontiers of Pharmacology. 2018. 89. Vladimir P.Torchilin. Multifunctional nanocarriers. Advanced Drug Delivery Reviews. 2006. 58(14) :p. 1532-1555 90. Chih-Hung Lin, Chun-Han Chen, Zih-Chan Lin, and Jia-You Fang, Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of Food and Drug Analysis. 2017. 25(2): p. 219-234. 91. Yutong Wang, Changyuan Wang, Jing Zhao, Yanfang Ding, and Lei Li, A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. Journal of Colloid and Interface Science. 2017. 485: p. 91-98. 92. Rui Zhang, Lei Yang, Rui Tu, Jinhua Huo, Jixing Wang, Jinwei Zhou, and Dajun Chen, Emulsion phase inversion from oil-in-water (1) to water-in-oil to oil-in-water (2) induced by in situ surface activation of CaCO3 nanoparticles via adsorption of sodium stearate. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015. 477: p. 55-62. 93. 張睿,and 蔡偉博.奈米凝膠在藥物輸送的應用.化工. 2015. 62(1);p. 84-91.
|