|
1. Tassi, P. & Muzet, A. Sleep inertia. Sleep Med. Rev. 4, 341–353 (2000). 2. Trotti, L. M. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Med. Rev. 35, 76–84 (2017). 3. Ohayon, M. M., Priest, R. G., Zulley, J. & Smirne, S. The place of confusional arousals in sleep and mental disorders: findings in a general population sample of 13,057 subjects. J. Nerv. Ment. Dis. 188, 340–8 (2000). 4. Kanady, J. C. & Harvey, A. G. Development and Validation of the Sleep Inertia Questionnaire (SIQ) and Assessment of Sleep Inertia in Analogue and Clinical Depression. Cognit. Ther. Res. 39, 601–612 (2015). 5. Billiard, M. & Sonka, K. Idiopathic hypersomnia. Sleep Med. Rev. 29, 23–33 (2016). 6. Burke, T. M. et al. Sleep inertia, sleep homeostatic and circadian influences on higher- order cognitive functions. J. Sleep Res. 24, n/a-n/a (2015). 7. Ferrara, M. et al. The electroencephalographic substratum of the awakening. Behav. Brain Res. 167, 237–244 (2006). 8. Marzano, C., Ferrara, M., Moroni, F. & De Gennaro, L. Electroencephalographic sleep inertia of the awakening brain. Neuroscience 176, 308–317 (2011). 9. Gorgoni, M. et al. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure. Sleep Med. 16, 883–890 (2015). 10. Balkin, T. J. The process of awakening: a PET study of regional brain activity patterns mediating the re-establishment of alertness and consciousness. Brain 125, 2308–2319 (2002). 11. Vallat, R., Meunier, D., Nicolas, A. & Ruby, P. Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures. Neuroimage 184, 266–278 (2019). 12. Tassi, P. et al. EEG spectral power and cognitive performance during sleep inertia: The effect of normal sleep duration and partial sleep deprivation. Physiol. Behav. 87, 177–184 (2006). 13. Salamé, P. et al. Effects of sleep inertia on cognitive performance following a 1-hour nap. Work Stress 9, 528–539 (1995). 14. Sadaghiani, S. & Kleinschmidt, A. Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn. Sci. 20, 805–817 (2016). 15. Basner, M. et al. Repeated administration effects on psychomotor vigilance test performance. Sleep 41, (2018). 16. Basner, M. & Dinges, D. F. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep 34, 581–91 (2011). 17. Hilditch, C. J., Centofanti, S. A., Dorrian, J. & Banks, S. A 30-Minute, but Not a 10- Minute Nighttime Nap is Associated with Sleep Inertia. Sleep 39, 675–685 (2016). 18. Rupp, T. L., Wesensten, N. J. & Balkin, T. J. Trait-like vulnerability to total and partial sleep loss. Sleep 35, 1163–72 (2012). 19. Coste, C. P. & Kleinschmidt, A. Cingulo-opercular network activity maintains alertness. Neuroimage (2016). doi:10.1016/j.neuroimage.2016.01.026 20. Sturm, W. & Willmes, K. On the Functional Neuroanatomy of Intrinsic and Phasic Alertness. Neuroimage 14, S76–S84 (2001). 21. Clemens, B. et al. Revealing the Functional Neuroanatomy of Intrinsic Alertness Using fMRI: Methodological Peculiarities. PLoS One 6, e25453 (2011). 22. Sadaghiani, S. & D’Esposito, M. Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness. Cereb. Cortex 25, 2763–73 (2015). 23. Sadaghiani, S. et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J. Neurosci. (2010). doi:10.1523/JNEUROSCI.1004-10.2010 24. Boly, M. et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. 104, 12187–12192 (2007). 25. Sadaghiani, S., Hesselmann, G. & Kleinschmidt, A. Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J. Neurosci. 29, 13410–7 (2009). 26. Sturm, W. et al. Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal- thalamic-brainstem network in the right hemisphere. Neuropsychologia (1999). doi:10.1016/S0028-3932(98)00141-9 27. Lim, J. et al. Imaging brain fatigue from sustained mental workload: An ASL perfusion study of the time-on-task effect. Neuroimage (2010). doi:10.1016/j.neuroimage.2009.11.020 28. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006). 29. Coull, J. T., Frith, C. D., Frackowiak, R. S. J. & Grasby, P. M. A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia (1996). doi:10.1016/0028-3932(96)00029-2 30. Sturm, W. et al. Network for auditory intrinsic alertness: A PET study. Neuropsychologia (2004). doi:10.1016/j.neuropsychologia.2003.11.004 31. Drummond, S. P. A. et al. The neural basis of the psychomotor vigilance task. Sleep 28, 1059–68 (2005). 32. Hayden, B. Y., Smith, D. V. & Platt, M. L. Electrophysiological correlates of default- mode processing in macaque posterior cingulate cortex. Proc. Natl. Acad. Sci. U. S. A. 106, 5948–53 (2009). 33. Anticevic, A. et al. The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 16, 584–92 (2012). 34. Dosenbach, N. U. F. et al. A Core System for the Implementation of Task Sets. Neuron (2006). doi:10.1016/j.neuron.2006.04.031 35. Singh, K. D. & Fawcett, I. P. Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 41, 100–12 (2008). 36. Iber, C., Ancoli-Israel, S., Chesson, A. & Quan, S. F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification. Journal of Clinical Sleep Medicine (2007). doi:10.1017/CBO9781107415324.004 37. Power, J. D. et al. Functional Network Organization of the Human Brain. Neuron (2011). doi:10.1016/j.neuron.2011.09.006 38. Hilditch, C. J., Dorrian, J., Centofanti, S. A., Van Dongen, H. P. & Banks, S. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study. Accid. Anal. Prev. 99, 411–415 (2017). 39. Hofer-Tinguely, G. et al. Sleep inertia: Performance changes after sleep, rest and active waking. Cogn. Brain Res. 22, 323–331 (2005). 40. Miccoli, L., Versace, F., Koterle, S. & Cavallero, C. Comparing sleep-loss sleepiness and sleep inertia: Lapses make the difference. Chronobiol. Int. (2008). doi:10.1080/07420520802397228 41. Kubo, T. et al. How do the timing and length of a night-shift nap affect sleep inertia? Chronobiol. Int. (2010). doi:10.3109/07420528.2010.489502 42. Signal, T. L., Van Den Berg, M. J., Mulrine, H. M. & Gander, P. H. Duration of sleep inertia after napping during simulated night work and in extended operations. Chronobiol. Int. (2012). doi:10.3109/07420528.2012.686547 43. Tietzel, A. J. & Lack, L. C. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep (2001). doi:10.1093/sleep/24.3.293 44. Hilditch, C. J., Dorrian, J. & Banks, S. A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow-wave sleep? Sleep Med. 32, 176–190 (2017). 45. Silva, E. J. & Duffy, J. F. Sleep Inertia Varies With Circadian Phase and Sleep Stage in Older Adults. Behav. Neurosci. (2008). doi:10.1037/0735-7044.122.4.928 46. Scheer, F. A. J. L., Shea, T. J., Hilton, M. F. & Shea, S. A. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night. J. Biol. Rhythms (2008). doi:10.1177/0748730408318081 47. Lovato, N., Lack, L., Ferguson, S. & Tremaine, R. The effects of a 30-min nap during night shift following a prophylactic sleep in the afternoon. Sleep Biol. Rhythms (2009). doi:10.1111/j.1479-8425.2009.00382.x 48. Nakajima, M. & Halassa, M. M. Thalamic control of functional cortical connectivity. Current Opinion in Neurobiology 44, 127–131 (2017). 49. Hwang, K., Bertolero, M. A., Liu, W. B., Mark, X. & Esposito, D. ’. The Human Thalamus Is an Integrative Hub for Functional Brain Networks. (2017). doi:10.1523/JNEUROSCI.0067-17.2017 50. Magnin, M. et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl. Acad. Sci. 107, 3829–3833 (2010). 51. Baker, R. et al. Altered Activity in the Central Medial Thalamus Precedes Changes in the Neocortex during Transitions into Both Sleep and Propofol Anesthesia. J. Neurosci. 34, 13326–13335 (2014). 52. Ren, S. et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science (80-. ). 362, 429–434 (2018). 53. Honjoh, S. et al. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 9, 2100 (2018). 54. Poudel, G. R., Innes, C. R. H., Bones, P. J., Watts, R. & Jones, R. D. Losing the struggle to stay awake: Divergent thalamic and cortical activity during microsleeps. Hum. Brain Mapp. 35, 257–269 (2014). 55. Poudel, G. R., Innes, C. R. H. & Jones, R. D. Temporal evolution of neural activity and connectivity during microsleeps when rested and following sleep restriction. Neuroimage 174, 263–273 (2018). 56. Wu, J. C. et al. The Effect of Sleep Deprivation on Cerebral Glucose Metabolic Rate in Normal Humans Assessed with Positron Emission Tomography. Sleep 14, 109–115 (1991). 57. Thomas, M. L. et al. Neural basis of alertness and cognitive performance impairments during sleepiness I. Effects of 24 of sleep deprivation on waking human regional brain activity. J. Sleep Res. (2000). doi:10.1016/S1472-9288(03)00020-7 58. Thomas, M. Neural basis of alertness and cognitive performance impairments during sleepiness II. Effects of 48 and 72 h of sleep deprivation on waking human regional brain activity. Thalamus Relat. Syst. 2, 199–229 (2003). 59. Ong, J. L. et al. Co-activated yet disconnected—Neural correlates of eye closures when trying to stay awake. Neuroimage 118, 553–562 (2015). 60. Chang, C. et al. Tracking brain arousal fluctuations with fMRI. Proc. Natl. Acad. Sci. U. S. A. 113, 4518–23 (2016). 61. Olbrich, S. et al. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45, 319–332 (2009). 62. Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 395 (2018). 63. Chand, T. et al. Predicting Vigilance State from the Mean Voxels Signals of Arousal Network. in OHBM (2018). 64. Paus, T. et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci. (1997). doi:10.1162/jocn.1997.9.3.392 65. Yanaka, H. T., Saito, D. N., Uchiyama, Y. & Sadato, N. Neural substrates of phasic alertness: A functional magnetic resonance imaging study. Neurosci. Res. 68, 51–58 (2010). 66. Chee, M. W. L. & Tan, J. C. Lapsing when sleep deprived: Neural activation characteristics of resistant and vulnerable individuals. Neuroimage (2010). doi:10.1016/j.neuroimage.2010.02.031 67. Portas, C. M. et al. A Specific Role for the Thalamus in Mediating the Interaction of Attention and Arousal in Humans. J. Neurosci. 18, 8979–8989 (1998). 68. Schmidt, C. et al. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science (80-. ). 324, 516–519 (2009). 69. Poudel, G. R., Innes, C. R. H. & Jones, R. D. Distinct neural correlates of time-on-task and transient errors during a visuomotor tracking task after sleep restriction. Neuroimage (2013). doi:10.1016/j.neuroimage.2013.03.054 70. Chee, M. W. et al. Lapsing during sleep deprivation is associated with distributed changes in brain activation. J Neurosci 28, 5519–5528 (2008). 71. Tomasi, D. et al. Impairment of attentional networks after 1 night of sleep deprivation. Cereb. Cortex (2009). doi:10.1093/cercor/bhn073 72. Drummond, S. P. A. et al. Altered brain response to verbal learning following sleep deprivation. Nature (2000). doi:10.1038/35001068 73. Drummond, S. P. A., Gillin, J. C. & Brown, G. G. Increased cerebral response during a divided attention task following sleep deprivation. J. Sleep Res. (2001). doi:10.1046/j.1365-2869.2001.00245.x 74. Drummond, S. P. A., Brown, G. G., Salamat, J. S. & Gillin, J. C. Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep (2004). 75. Drummond, S. P. A., Meloy, M. J., Yanagi, M. A., Orff, H. J. & Brown, G. G. Compensatory recruitment after sleep deprivation and the relationship with performance. Psychiatry Res. - Neuroimaging (2005). doi:10.1016/j.pscychresns.2005.06.007 76. Czisch, M. et al. On the Need of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative Activity Using Combined EEG/fMRI. Front. Neurol. 3, 67 (2012). 77. Jakab, A., Molnár, P. P., Bogner, P., Béres, M. & Berényi, E. L. Connectivity-based parcellation reveals interhemispheric differences in the insula. Brain Topogr. (2012). doi:10.1007/s10548-011-0205-y 78. Seeley, W. W. et al. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J. Neurosci. (2007). doi:10.1523/JNEUROSCI.5587-06.2007 79. Magnuson, M. E. et al. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI. Brain Imaging Behav. (2015). doi:10.1007/s11682-014-9347-3 80. Thompson, G. J. et al. Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually. Hum. Brain Mapp. (2013). doi:10.1002/hbm.22140 81. Clare Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. Neuroimage (2008). doi:10.1016/j.neuroimage.2007.08.008 82. Tomasi, D., Wang, R., Wang, G. J. & Volkow, N. D. Functional connectivity and brain activation: A synergistic approach. Cereb. Cortex 24, 2619–2629 (2014). 83. Tomasi, D. & Volkow, N. D. Association Between Brain Activation and Functional Connectivity. Cereb. Cortex 29, 1984–1996 (2019). 84. Kalcher, K. et al. RESCALE: Voxel-specific task-fMRI scaling using resting state fluctuation amplitude. Neuroimage 70, 80–88 (2013). 85. Kannurpatti, S. S., Rypma, B. & Biswal, B. B. Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI. Front. Syst. Neurosci. 6, 7 (2012). 86. Dai, R. et al. Interplay between Heightened Temporal Variability of Spontaneous Brain Activity and Task-Evoked Hyperactivation in the Blind. Front. Hum. Neurosci. 10, 632 (2016). 87. Yuan, R. et al. Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations. Magn. Reson. Imaging 31, 1492–1500 (2013). 88. Fransson, P. How default is the default mode of brain function? Neuropsychologia 44, 2836–2845 (2006). 89. Cole, M. W., Ito, T., Bassett, D. S. & Schultz, D. H. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19, 1718–1726 (2016). 90. Haag, L. M. et al. Resting BOLD fluctuations in the primary somatosensory cortex correlate with tactile acuity. Cortex 64, 20–28 (2015).
|