跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林曉逸
研究生(外文):Lin Shiao Yi
論文名稱:標準CMOS製程之新型微機電麥克風驗證、濕式蝕刻加工製程開發暨量產製程研究
指導教授:陳健章陳健章引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生物醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:微機電麥克風超音波
外文關鍵詞:MEMSMicrophoneUltrasound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究一新型微機電感應器如何使用標準CMOS製程製作。過往微機電感測器對於製程殘留應力與蝕刻過程中黏滯效應的反應非常劇烈,故微機電製程在晶圓製造商端通常為客製化製程,旨在最小化上述問題的干擾。本文中所提出的新型微機電感測器利用仿生設計揉合寄生蠅與酢醬草結構,除了提升元件敏感度以及感測振幅,同時利用仿生結構強化抵抗殘留應力的影響,遂能成功移植至標準CMOS製程中實現。由於CMOS製程中作為懸浮震膜用的金屬層為多層薄膜堆疊而成,不同殘留應力場對於薄膜作用將產生結構形變,因此利用模擬軟體CoventorWare了解殘留應力造成的出平面影響,以及模擬超高深寬比蝕刻目標面對黏滯效應的影響。最後透過模擬已可以初步得知移植至CMOS製程之結果,並回饋給元件設計從而得到更好的設計指引。本文後段在討論如何實現可量產之標準後加工製程,包含調整可適用之蝕刻液以及烘烤流程,並提出一較佳配方提升感測元件性能並使用雷射督卜勒與電訊號轉換驗證此一結果。該結果表明,除了目標頻譜1~16KHz的人耳應用場景擁有-38dBV/Pa SPL,其可適用範圍可深達55KHz。而後透過實驗結果提出新型感測器改善方向,希望實現微機電感測器移植至標準CMOS製程之目標。
The thesis focuses on the method of using CMOS standard processes to the application of new MEMS (Microelectromechanical Systems) sensors. Due to the MEMS sensors suffer dramatic residual stresses in processes and viscous effect in etching procedures, wafer manufacturers always offer the MEMS processes as customized processes to reduce the effects from the mentioned issues. Thus, a new MEMS sensors manufactured using CMOS standard processes was elucidated in this thesis. By combining the mechanical structures of parasitoid fly Ormia ochracea and cloverleaf stem, the proposed MEMS structure can not only reinforce the sensitivity and the amplitudes of sensors, but also have high resistance to the effects from the residual stresses in the duration of CMOS processes. Furthermore, due to the vibrating membrane of the sensors were manufactured with multi-metal layers, the sensor membrane suffers significant deformations under the effects of residual stresses, so we used the simulation tool, CoventorWare, to investigate the out-of-plane deformations applied by the residual stresses and study how the viscous effects influence the sensor structure with ultra-high aspect ratio. Eventually, we use the simulation results to be as the guideline of the sensor design using the CMOS standard processes. In the rest part, we also provide a guideline for mass products using the CMOS standard processed, which includes a suitable post-etching recipe for the MEMS sensors in CMOS processes and the corresponding customized baking procedures. In final, the performance of the MEMS sensors was validated using laser Doppler experiments and a corresponding read-out circuit. The experimental results demonstrated that the proposed MEMS sensors can have -38 dBV/Pa SPL in the frequency spectra from 1 to 16KHz, which in similar to the human ear functions, and further the application region can be extended to 55KHz. Therefore, it is our belief that the proposed post-CMOS-like processes open an avenue that we might realize MEMS sensors by employing CMOS standard processes.
中文摘要 I
英文摘要 II
圖目錄 V
表目錄 VI
第一章 研究背景與動機 1
第二章 研究方法 5
2-1 微機電仿生聲學感測器原理 5
2-2 等效物理行為模型與設計方案 6
第三章 實驗方法 11
3-1 聲電訊號驗證電路 11
3-2 製程設計結構物理 12
3-2-1 液體黏滯 12
3-2-2 殘留應力 13
3-3 模擬與製程設計 13
3-3-1 Coventor Ware模擬 14
第四章 實驗結果與驗證 30
4-1 雷射督卜勒驗證 30
4-2 電訊號驗證 32
第五章 設計檢討與結論 39
5-1 設計檢討 39
5-2 綜合討論 41
參考文獻 43
[1] A. Dehé, Aigner, T. Bever, K.G. Oppermann, E. Pettenpaul, S. Schmitt and H.-J. Timme “Silicon micromachined microphone chip at Siemens”, 137th Meeting of the Acoustical Society of America and 2nd Convention of the European Acoustic Association, Berlin, March 14-19, 1999; Acta Acustica, Vol. 85, 1999
[2] Alfons Dehé, Martin Wurzer, Marc Füldner and Ulrich Krumbein “The Infineon Silicon MEMS Microphone”, AMA Conferences 2013 2013-05-14 - 2013-05-16 Nürnberg, DOI 10.5162/sensor2013/A4.3
[3] Hao-Yen Tang, Yipeng Lu, Xiaoyue Jiang, Eldwin J. Ng, Julius M. Tsai, David A. Horsley, Bernhard E. Boser “3-D Ultrasonic Fingerprint Sensor-on-a-Chip”, IEEE Journal of Solid-State Circuits ( Volume: 51 , Issue: 11 , Nov. 2016 )
[4] C. C. Chen* and Y. T. Cheng, “Physical Analysis of a Biomimetic Microphone with a Central-Supported (C-S) Circular Diaphragm for Sound Source Localization,” IEEE Sensors Journal, Vol.12, pp.1504-1512, May 2012.
[5] D. Robert, R. N. Miles, and R. R. Hoy, “Directional hearing by mechanical coupling in the parasitoid fly Ormia Ochracea,” Journal of Comparative Physiology A, Vol. 179, pp. 29-44, July 1996.
[6] R. N. Miles, D. Robert, and R. R. Hoy, “Mechanically coupled ears for directional hearing in the parasitoid fly Ormia Ochracea,” Journal of the Acoustical Society of America, Vol. 98, pp. 3059-3070, June 1995.
[7] D. Robert, J. Amoroso, and R. R. Hoy, “The evolutionary convergence of hearing in a parasitoid fly and its cricket host,” Science, Vol. 258, pp. 1135-1137, November 1992.
[8] D. Robert, R. N. Miles, and R. R. Hoy, “Tympanal mechanics in the parasitoid fly Ormia ochracea: intertympanal coupling during mechanical vibration,” Journal of Comparative Physiology A, Vol. 183, pp. 443-452, June 1998.
[9] D. Robert, R. N. Miles, and R. R. Hoy, “Tympanal hearing in the Sarcophagid Parasitoid Fly Emblemasoma SP.: the biomechanics of directional hearing” The Journal of Experimental Biology, Vol. 202, pp. 1865-1876, June 1999.
[10] D. Robert and M. C. Göpfert, “Acoustic sensitivity of fly antennae,” Journal of Insect Physiology, Vol. 48, pp. 189-196, February 2002.
[11] G. U. C. Lehmann and K.-G. Heller, “Bushcricket song structure and predation by the acoustically orienting parasitoid fly Therobia leonidei (Diptera: Tachinidae: Ormiini),” Behav. Ecol. Sociobiol., Vol. 43, pp. 239-245, March 1998.
[12] U. Köhler and R. Lakes-Harlan, “Auditory behaviour of a parasitoid fly (Emblemasoma auditrix, Sarcophagidae, Diptera),” Journal of Comparative Physiology A, Vol. 187, pp. 581-587, September 2001.
[13] A. C. Mason, M. L. Oshinsky, and R. R. Hoy, “Hyperacute directional hearing in a microscale auditory system,” Nature, Vol. 410, pp. 686-690, April 2001.
[14] J. Sueur, E. J. Tuck, and D. Robert, “Sound radiation around a flying fly,” Journal of the Acoustical Society of America, Vol. 118, pp. 530-538, July 2005.
[15] H. Liu, X. Zhang, and M. Yu, “Understanding fly-ear inspired directional microphones” in Proc. of SPIE, pp. 2M1-2M11, 2009.
[16] J. Reinke, A. Jajoo, L. Wang, G. Fedder, and T. Mukherjee, “CMOS-MEMS Variable Capacitors with Low Parasitic Capacitance for Frequency-Reconfigurable RF Circuits,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 509-512, 2009.
[17] Y. Zhang, Q. Ren and Y.-P. Zhao, “Modelling analysis of surface stress on a rectangular cantilever beam,” J. Phys. D: Appl. Phys., Vol. 37, pp. 2140-2145, 2004.
[18] A. Witvrouwa, B. Du Boisa,b, P. De Moora, A. Verbista, C. Van Hoofa, H. Bendera , Kris Baerta “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal” Proc. SPIE 4174, Micromachining and Microfabrication Process Technology VI, 130 (August 25, 2000); doi:10.1117/12.396423
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊