(3.234.221.162) 您好!臺灣時間:2021/04/14 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍淑慧
研究生(外文):LAN, SHU-HUI
論文名稱:國際財務報導準則 8 營運部門在工業4.0下: 一個企業集團的作業標準成本產品決策模式
論文名稱(外文):The IFRS 8 Operating Segments under Industry 4.0: An Enterprise Group’s Activity-Based Standard Costing Production decision model
指導教授:蔡文賢蔡文賢引用關係
指導教授(外文):Wen-Hsien Tsai
學位類別:博士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:國際財務報導準則營運部門製造執行系統企業資源計畫系統
外文關鍵詞:IFRSIFRS 8MESERP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這個研究創造一個智慧營運路線圖 (smart operating roadmap), 表達一個策略企業規畫的整個過程, 包含:功能職責 (function)、方法 (methods) 和工具 (tools), 連結國際財務報導準則 8 (IFRS 8) 到作業標準成本法 (ABSC) ,和整合企業資源計畫系統(ERP)、製造執行系統(MES)和未來工業4.0環境。國際財務報導準則(IFRS) 是一個全球的會計架構, 提供高品質全球的會計標準及治理原理給所有公司。使用作業標準成本 (ABSC) 產品決策模能夠幫助管理當局 (CODM) 在規劃產品事業部(Product-BU)組織, 以遵守國際財務報導準則 8 (IFRS 8)營運部門定義。這個鋼品集團的個案, 研究使用企業資源計畫系統(ERP)的組織設計去實現可報導部門的財務報表系統化。在這過程,數學規劃模式 (mathematical programing methods) 和作業標準成本法限制(ABSC constraints) 可以獲得最佳方案對於銷售、成本和利潤。最後, 系統化的財務報表包含智能數據(smart data)、銷售預測 (sales forecasts) 和數學規劃成本模式 (mathematical programing cost methods) 遵循國際財務報導準則 8 (IFRS 8)和作業標準成本產品決策模式 (ABSC Production decision model)。
This study creates a smart operating roadmap, which shows the entire process of a strategic business plan, including: function, methods, and tools, links IFRS 8 to ABSC, and integrates ERP, MES systems, and future Industry 4.0 environments. The International Financial Reporting Standards (IFRS) are a global accounting framework that provides high-quality global accounting standards and governance principles for all companies. Using the ABSC production decision model can support the Chief Operating Decision Maker (CODM) in planning Product-Business unit (Product-BU) organization, which complies with the definition of the IFRS8 Operating Segments. The case study of the Steel Group uses the organizational design of the ERP system to achieve the systematization of Reportable Segments financial statements. In this process, the mathematical programing methods and ABSC constraints can obtain the optimal solutions for sales, costs, and profits. Finally, the systematic financial statements include smart data, sales forecasts, and mathematical programing cost methods, which follow IFRS 8 and the ABSC Production decision model.
Table of Contents
頁次
中文摘要 ………………………………………………………………………………... i

英文摘要 ………………………………………………………………………………... ii

Brief Contents ………………………………………………………………………………... iii

List of Figures ………………………………………………………………………………... iv

List of Tables ………………………………………………………………………………... v

Contents
1. Introduction………………………………………………………………. 1
2. Research background………………………………………………… 4
2.1. The concept of Industry 4.0………………………………………. 4
2.2. Integrating a concept of Smart Operation between MES and ERP……………………………………………………………..
5
3. The ABSC in a smart ERP and MES…………………………….. 8
3.1. Brief of the ABC theory……………………………………………… 8
3.2. Brief of the ABSC in ERP and MES systems………………… 8
3.3. The ABSC in a Smart Factory……………………………………… 11
3.4. Standard costs for Smart Products…………………………….. 11
3.5. Production decision model of ABSC and IFRS 8 Operating Segments in a Smart Factory………………………
12
4. The formulation of an ABSC mixed decision through IFRS 8 for a Steel Group………………………………………………
13
4.1. Describing production processes for a Steel Group……. 14
4.2. Steel group cost categories for the ABSC mixed decision model……………………………………………………………
15
4.3. Assumptions………………………………………………………………. 15
4.4. Notations……………………………………………………………………. 16
4.5. Mathematical programming model……………………………. 18
4.5.1. Integrated models……………………………………………………… 19
4.5.2. Sales amount following IFRS 8 standards……………………. 20
4.5.3. Direct material cost…………………………………………………… 21
4.5.4. Semi-manufactured goods…………………………………………. 21
4.5.5. Direct labor cost………………………………………………………… 21
4.5.6. Other fixed labor costs………………………………………………. 22
4.5.7. Direct electricity power cost………………………………………. 22
4.5.8. Machine cost……………………………………………………………… 22
4.5.9. CO2 emission cost………………………………………………………. 23
4.5.10. Other indirect costs…………………………………………………… 23
5. Illustrative case study and discussion…………………………. 23
5.1. Strategy Model for Group Organization……………………… 23
5.1.1. Smart Data and Sales Forecast……………………………………. 25
5.2. Planning and discussion……………………………………………… 26
5.3. Direct material and Semi-manufactured goods…………… 26
5.4. Direct labor for unit-level……………………………………………. 27
5.4.1. Indirect labor for batch-level……………………………………… 28
5.5. Electricity power cost only for EAF…………………………….. 28
5.6. Machine hours and cost…………………………………………….. 28
5.7. CO2 Emission quantity and cost………………………………… 29
5.8. Other indirect costs…………………………………………………… 29
5.9. Designing a measurement report for Reportable Segments in the ERP system………………………………………
29
6. Systemizing case study and following IFRS 8 and ABSC production decision……………………………………………………
31
6.1. Designing the Reportable Segments financial statements following IFRS 8 and ABSC……………………….
33
6.2. Comparing Product P1 in the different factories………… 35
6.3. Comparing the unit and cost structure analysis of P1…. 35
7. Summary and Conclusions…………………………………………. 36
References ………………………………………………………………………………... 37
[1] American Iron and Steel Institute, Steel Production, Recycling, http://www.steel.org/about-aisi/industry-profile.aspx (Accessed 08.15.17).
[2] Accounting Tools, ACCOUNTING CPE COURSES & BOOKS, What is IFRS?, https://www.accountingtools.com/articles/what-is-ifrs.html (Accessed 08.14.18).
[3] G. Adamson, L. Wang, P. Moore, Feature-based control and information framework for adaptive and distributed manufacturing in cyber physical systems. ELSEVIER, Journal of manufacturing Systems 43 (2017) 305-315.
[4] A. Albers, B. Gladysz, T. Pinner, V. Butenko, T. Stürmlinger, Procedure for defining the system of objectives in the initial phase of an industry 4.0 project focusing on intelligent quality control systems. ELSEVIER, ScienceDirect, Procedia CIRP 52 (2016) 262 – 267.
[5] A. Albers, T. Stürmlinger, K. Wantzen, B. Gladysz, F. Münke, Prediction of the product quality of turned parts by real-time acoustic emission indicators. ELSEVIER, ScienceDirect, Procedia CIRP 63 (2017) 348 – 353.
[6] Accounting Coach, What is a standard cost? https://www.accountingcoach.com/blog/what-is-a-standard-cost (Accessed 09.17.18).
[7] J. S. Bedolla, G. D’Antonio, P. Chiabert, A novel approach for teaching IT tools within Learning Factories. ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 175– 181.
[8] W. Bauer, M. Hämmerle, S. Schlund, C. Vocke, Transforming to a hyper-connected society and economy – towards an “Industry 4.0”. ELSEVIER, ScienceDirect, Procedia Manufacturing 3 (2015) 417 – 424.
[9] J. Brandenburger, V. Colla, G. Nastasi, F. Ferro, C. Schirm, J. Melcher, Big Data Solution for Quality Monitoring and Improvement on Flat Steel Production. ELSEVIER, Science Direct,IFac-papersOnLine 49-20(2016) 055-060.
[10] J. Brandenburger, V. Colla, G. Nastasi, F. Ferro, C. Schirm, J. Melcher, Big Data Solution for Quality Monitoring and Improvement on Flat Steel Production. ELSEVIER, ScienceDirect, IFAC-PapersOnLine 49-20 (2016) 055–060.
[11] BusinessDictionary business unit. www.businessdictionary.com/definition/business-unit.html (Accessed 04.10.19).
[12] C. J. H. Bauerdick, M. Helfert, B. Menz, E. Abele, A Common Software Framework for Energy Data Based Monitoring and Controlling for Machine Power Peak Reduction and Workpiece Quality Improvements. ELSEVIER, ScienceDirect, Procedia CIRP 61 (2017) 359 – 364.
[13] H. Blunck, J. Bendul, Controlling Myopic Behavior in Distributed Production Systems — A Classification of Design Choices. ELSEVIER, ScienceDirect, Procedia CIRP 57 (2016) 158 – 163.
[14] D. Chorafas, Strategic Business Planning for Accountants (2006) https://www.elsevier.com/books/strategic-business-planning-for-accountants/chorafas/978-0-7506-8132-2 (Accessed 04.06.19).
[15] K.C. Chen, S. Y. Lien, Machine-to-machine communications: Technologies and chalienges. Ad Hoc Networks 18 (2014) 3-23.
[16] J. –Y. Chen, K. –C. Tai, G. –C. Chen, Application of Programmable Logic Controller to Build-up an Intelligent Industry 4.0 Platform. ELSEVIER, ScienceDirect, Procedia CIRP 63 (2017) 150– 155.
[17] C.L. Constantinescu, E. Francalanza, D. Matarazzo, O. Balkan, Information support and interactive planning in the Digital Factory: Approach and industry-driven evaluation. ELSEVIER, ScienceDirect, Procedia CIRP 25 (2014) 269– 275.
[18] C.L. Constantinescu, E. Francalanza, D. Matarazzo, Towards knowledge capturing and innovative human-system interface in an open-source factory modelling and simulation environment. ELSEVIER, ScienceDirect, Procedia CIRP 33 (2015) 23-28.
[19] Chinatimes.com, https://www.chinatimes.com/realtimenews/20160107004301-260410 (Accessed on 10.15.18).
[20] Deloitte., Standards, IFRS 8-Operating Segments, https://www.iasplus.com/en/standards/ifrs/ifrs8 (Accessed 08.12.18).
[21] S. Demi, M. Haddara, Do cloud ERP Systems Retire? An ERP Lifecycle Perspective. Procedia Computer Science 138 (2018) 587-594.
[22] DATAVERSITY, Big Data vs. Smart Data, https://www.dataversity.net/big-data-vs-smart-data/ ( Accessed 04.10.19).
[23] Deloitte., Financial reporting framework in Taiwan https://www.iasplus.com/en/jurisdictions/asia/taiwan (Accessed 08.21.18).
[24] S. Erol, W. Sihn, Intelligent production planning and control in the cloud – towards a scalable software architecture. ELSEVIER, ScienceDirect, Procedia CIRP 62 (2017) 571-576.
[25] EXCHANGE-RATES.ORG, https://tw.exchange-rates.org/Rate/TWD/VND (Accessed 10.16.18).
[26] H. Fleischmann, J. Kohl, J. Franke, A Modular Architecture for the Design of Condition Monitoring Processes. ELSEVIER, ScienceDirect, Procedia CIRP 57 (2016) 410 – 415.
[27] M. Friedemann, T. U. Trapp, J. Stoldt, T. Langer, M. Putz, A Framework for Information-driven Manufacturing. ELSEVIER, ScienceDirect, Procedia CIRP 57 (2016) 38– 43.
[28] F. Gregori, A. Papettia, M. Pandolfib, M. Peruzzinic, M. Germania, Digital manufacturing systems: a framework to improve social sustainability of a production site. ELSEVIER, ScienceDirect, Procedia CIRP 63 ( 2017 ) 436 – 442.
[29] S. Goguelin, J. Colaco, V. Dhokia, D. Schaefer, Smart Manufacturability Analysis for Digital Product Development. ELSEVIER, ScienceDirect, Procedia CIRP 60 (2017) 56– 64.
[30] P. Hold, S. Erol, G. Reisinger, W. Sihn, Planning and Evaluation of Digital Assistance Systems. ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 143– 150.
[31] M. Hammer, K. Somers, Hugo Karre, C. Ramsauer, Profit per hour as a target process control parameter for manufacturing systems enabled by Big Data analytics and Industry 4.0 infrastructure. ELSEVIER, ScienceDirect, Procedia CIRP 63 (2017) 715-720.
[32] IFRS®. Why global accounting standards?, https://www.ifrs.org/use-around-the-world/why-global-accounting-standards/ (Accessed 08.12.18)
[33] IFRS®.IFRS® Standards and IFRIC® Interpretations, https://www.ifrs.org/issued-standards/ (Accessed 08.13.18).
[34] Q. Jian, L. Ying, G. Roger, A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. ELSEVIER, Science Direct, Procedia CIRP 52,(2016) pp.173-178.
[35] K. Jurgen, Manufacturing Execution System-MES. Springer Berlin Heidelberg: New York, (2007) 1-39, 61-78.
[36] D. Küsters, N. Praß, Y.-S. Gloy, Textile Learning Factory 4.0 – Preparing Germany’s Textile Industry for the Digital Future. ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 214– 221.
[37] M. Kans, A. Ingwald, Business Model Development towards Service Management 4.0. ELSEVIER, ScienceDirect, Procedia CIRP 47 (2016) 489-494.
[38] F.C. Liua, H.T. Hsub, D. C. Yenc, Technology executives in the changing accounting information environment: Impact of IFRS adoption on CIO compensation. Information & Management. Volume 55 (2018), 877-889.
[39] Lumen Managerial Accounting, 8.4 Advantages and Disadvantages of Standard Costing. https://courses.lumenlearning.com/sac-managacct/chapter/advantages-and-disadvantages-of-standard-costing/ (Accessed 09.17.18).
[40] H. Moutaz, E. Ahmed, The Readiness of ERP Systems for the Factory of the Future. Procedia Comput. Sci. (2015) 64, 721–728.
[41] Y.S. Maribel, O.S. Jorge, A. Carina, V.L. Francisca, C. Eduarda, C. Carlos, M. Bruno, G. Joao, 2017. A Big Data system supporting Bosch Braga Industry 4.0 strategy. International Journal of Information Management, Volume 37, Isue 6,(2017) 750-760.
[42] L. Merkel, J. Atug, L. Merhar, C. Schultz, Stefan Braunreuther, G. Reinhart, Teaching Smart Production: An insight into the Learning Factory for Cyber-Physical Production Systems (LVP). ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 269-274.
[43] M. J. Neuer, F. Marchiori, A. Ebel, N. Matskanis, L. Piedimonti, A. Wolff, G. Mathis, Dynamic reallocation and rescheduling of steel products using agents with strategical anticipation and virtual market structures. ELSEVIER, ScienceDirect, IFAC-PapersOnLine 49-20 (2016) 232–237.
[44] NETSCOUT, What is Smart Data? How Does it Help? https://www.netscout.com/blog/what-smart-data-how-does-it-help (Accessed 04.10.19).
[45] H. Neradilova, G. Fedorko, Simulation of the supply of workplaces by the AGV in the digital factory. ELSEVIER, ScienceDirect, Procedia Engineering 192 (2017) 638– 643.
[46] F. Quint, K. Sebastian, D. Gorecky, A Mixed-reality Learning Environment. ELSEVIER, ScienceDirect, Procedia Computer Science 75 (2015) 43-48.
[47] T. Stock, G. Seliger, Opportunities of Sustainable Manufacturing in Industry 4.0. ELSEVIER, ScienceDirect, Procedia CIRP 40 (2016) 536-541.
[48] O. Sauer, Information Technology for the Factory of the future-State of the Art and Need for Action. ELSEVIER, ScienceDirect, Procedia CIRP 25 (2014) 293-296.
[49] K.-F. Seitz, P. Nyhuis, Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. ELSEVIER, ScienceDirect, Procedia CIRP 32 (2015) 92– 97.
[50] B. Sokolov, D. Ivanov, INTEGRATED SCHEDULING OF MATERIAL FLOWS AND INFORMATION SERVICES IN INDUSTRY 4.0 SUPPLY NETWORKS. ELSEVIER, ScienceDirect, IFAC-PapersOnLine 48-3 (2015) 1533–1538.
[51] S. Simons, P. Abé, S. Neser, Learning in the AutFab – the fully automated Industrie 4.0 learning factory of the University of Applied Sciences Darmstadt. ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 81– 88.
[52] W.H. Tsai, S.H. Lan, C.T. Huang, Activity-Based Standard Costing Product-Mix Decision in the Future Digital Era: Green Recycling Steel-Scrap Material for Steel Industry. Sustainability, Volume 11, Issue 3 (2019).
[53] W.H. Tsai, Project Management Accounting Using Activity-Based Costing Approach. The Handbook of Technology Management, Volume 1, (2010) pp.469-488, John Wiley & Sons, Inc., (ISBN:978-047-24947-5).
[54] W.H. Tsai, Activity-Based Costing Model for Joint Products’. Computers & Industrial Engineering, Vol.31, No.3/4, (1996) PP.725-729.(SCI).
[55] W.H. Tsai, A technical note on using work sampling to estimate the effort on activities under activity-based costing. International Journal Production Economics, Volume 43, No.1, (1996) pp.11-16. (SCI;EI).
[56] W.H. Tsai, T.Y. Hwang, J.C. Chang, C.W. Lai, S.J. Lin, C.H. Yang, Taxonomy of cost of quality (COQ) across the enterprise resource planning (ERP) implementation phases. African Journal of Business Management Vol. 6(3), (2012) pp.854-864.
[57] W.H. Tsai, T. W. Lin, A Mathematical Programming Approach to Analyze the Activity-Based Costing Product-Mix Decision with Capacity Expansions. Management Science, Vo1.11, Kenneth D. Lawrence (ed.), JAI Press Inc., USA, (2004) pp.163-178.
[58] A. Trusculescu, A. Draghici, C. T. Albulescu, Key Metrics and Key Drivers in the Valuation of Public Enterprise Resource Planning Companies. ELSEVIER, ScienceDirect, Procedia Computer Science 65 (2015) 917-923.
[59] TUNG HO STEEL ENTERPRISE CORP., Profile, CSR, Products, http://www.tunghosteel.com/EN/HomeEg/about/intro (Accessed 09.25.18).
[60] T. H.-J. Uhlemann, C. Schock, C. Lehmann, S. Freiberger, R. Steinhilper, The Digital Twin: Demonstrating the potential of real time data acquisition in production systems. ELSEVIER, ScienceDirect, Procedia Manufacturing 9 (2017) 113 – 120.
[61] T. H.-J. Uhlemann, C. Lehmann, R. Steinhilper, The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. ELSEVIER, ScienceDirect, Procedia CIRP 61 (2017) 335– 340.
[62] J. W. Volkmann, M. Landherr, D. Lucke, M. Sacco, M. Lickefett, E. Westkämper, Engineering apps for advanced industrial engineering. ELSEVIER, ScienceDirect, Procedia CIRP 41 (2016) 632– 637.
[63] S. Weyer, T. Meyer, M. Ohmer, D. Gorecky, D. Zuhlke, Future Modeling and Simulation of CPS-based Factories: an Example from the Automotive Industry. ELSEVIER, ScienceDirect, IFAC-PapersOnLine 49-31 (2016) 97–102.
[64] Whatls.Com, Smart data, https://whatis.techtarget.com/definition/smart-data (Accessed 04.10.19).
[65] Wikipedia, Steelmaking, https://en.m.wikipedia.org/wiki/Steelmaking (Accessed 08.15.17).
[66] Ministry of Labor, https://www.mol.gov.tw/topic/3067/5990/13171/19154/ (Accessed 10.14.18).
[67] Wikipedia, List of minimum wages by country, https://en.m.wikipedia.org/wiki/List_of_minimum_wages_by_country (Accessed 10.15.18).
[68] J. Xiaoa, Y. Wua, K. Xiea, Q. Hub, Managing the e-commerce disruption with IT-based innovations: Insights from strategic renewal perspectives. Information & Management. Volume 56, issue 1, (2019) 122-139.
電子全文 電子全文(網際網路公開日期:20240610)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔