(3.236.231.14) 您好!臺灣時間:2021/04/15 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊惠茜
研究生(外文):Hui-Chien Yang
論文名稱:紅光氮化銦鎵量子井於表面電漿生醫感測應用上的初步探討
論文名稱(外文):Red-emitting InGaN Quantum Well on Surface Plasmon Resonance Biosensing Applications: An Initial Investigation
指導教授:賴昆佑
指導教授(外文):Kun-Yu Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:紅光氮化銦鎵量子井表面電漿生醫感測紅光氮化銦鎵量子井
外文關鍵詞:Red-emittingInGaN Quantum WellSurface Plasmon ResonanceBiosensingRed-emitting InGaN Quantum Well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ⅲ-Ⅴ族氮化物半導體的研究與應用已經很廣泛,由於Ⅲ-Ⅴ族氮化物屬於直接能隙、寬能帶的材料,在550 nm以下的波長範圍,有很高的發光效率,而表面電漿共振效應可進一步提升氮化物半導體的發光效率。表面電漿共振是存在於金屬與介電質的介面處,當光波的頻率與金屬表面自由電子的頻率一致時,金屬表面的電子會發生集體震盪,大幅增加氮化物量子井的發光效率。
本研究採用氮化銦鎵量子井作為介電質,分別搭配金薄膜和銀薄膜,以形成表面電漿效應。我們分析金、銀薄膜對量子井發光頻譜的影響,發現10 nm厚的銀會使量子井發出很強的紅光(~ 650 nm),金薄膜則無此現象。我們認為此強烈紅光來自於銀與量子井所匹配而成的表面電漿效應。量子井所發出的紅光強度,會因銀表面折射率的改變,而產生變化。此現象在生醫感測上有一定的應用價值,可用來感測生物分子結合所產生的折射率變化。
III-V nitride semiconductors have been applied on various types of optoelectronic devices.. Owing to its direct and wide-spanned energy gap, the compound exhibits exceptionally high radiative recombination rate at the wavelengths below 550 nm. If integrated with a surface plasma resonance (SPR) structure, the quantum wells (QWs) made of nitride compounds can produce much intensified emission spectra. The SPR phenomenon exists at the interface between metal and dielectric. When the frequency of an incident light matches that of the free electrons on metal surface, the radiative recombination efficiency of the QWs can be boosted.
In this research, InGaN QWs are used as the dielectric material to induce the SPR effect with the metal film made of Au or Ag. It is found that the QWs capped with a 10-nm Ag exhibit strong emission at the wavelengths around 650 nm, which is not observed the QWs capped with Au. The result was due to the SPR effect induced by the Ag film. The intensity of the strong red emission is found to be changed upon the variation of refractive index on the Ag surface. The index-dependency of red emission is a potential tool for SPR biosensors, as the biomolecular interactions can be detected by the change of emission intensity.
論文摘要 i
ABSTRACT ii
致謝 iii
圖目錄 v
第一章、緒論 1
1.1前言 1
1.2氮化物量子井的優勢 3
1.3表面電漿在生醫感測上的優勢 4
1.4研究動機與章節架構 7
本文主要分成四個章節 8
第二章、實驗原理、方法與儀器 10
2.1表面電漿的共振原理 10
2.2金屬奈米顆粒耦合表面電漿原理 20
2.3紅光氮化物量子井的發光機制 23
2.4光致激發光譜儀的量測原理 25
2.5磊晶結構及製程步驟 27
第三章、分析與討論 30
3.1金與銀的表面電漿效應 30
3.2紅光量子井的發光行為與調控 35
3.3感測效果的評估與分析 38
第四章、結論與未來展望 41
4.1結論 41
4.2未來發展 42
參考文獻 43
[1] I. Vurgaftman and J. R. Meyer, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89, 5815 (2001)
[2] S. Strite*, M. E. Lin and H. Morkoq, Progress and prospects for GaN and the III-V nitride semiconductors, Thin Solid Films, 231 (1993)
[3] K. Kubota, Y. Kobayashi, and K. Fujimoto, Preparation and properties of III‐V nitride thin films, J. Appl. Phys. 66, 2984 (1989)
[4] N. Grandjean, J. Massies, and M. Leroux, Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers, Appl. Phys. Lett. 69, 2071 (1996)
[5]張育嘉,圖形化藍寶石基板應用於氮化鎵發光二極體之研究, 國立中央大學光 電科學研究所碩士論文,(2008)
[6] S. Yoshida, S. Misawa, and S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates, Appl. Phys. Lett. 42, 427 (1983)
[7]游宏偉,蘇俊榮,張翼,磊晶成長砷化(銦)鎵通道層於矽基板上對高效率低耗能電晶體之應用, nano communication 25卷N0.1 (2018)
[8] S. A. Nikishin. et al. High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia, Appl. Phys. Lett. 75, 2073 (1999)
[9] F.Wu. et al. Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures, J. Appl. Phys.117, 155701 (2015)
[10] J. Bai and M. Dudley, Reduction of threading dislocation densities in AlN/sapphire epilayers driven by growth mode modification, Appl. Phys. Lett. 88, 051903 (2006)
[11] Kazumasa Hiramatsu, Epitaxial lateral overgrowth techniques used in group III nitride epitaxy, J. Phys. Condens. Matter 13,6961–6975 (2001)
[12] Nurul Diyanah Samsuri. et al. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications, EPJ Web of Conferences 162, 01002 (2017)
[13]百科知識, 纖鋅礦結構圖https://www.easyatm.com.tw/wiki/%E7%BA%96%E9%8B%85%E7%A4%A6%E5%9E%8B%E7%B5%90%E6%A7%8B
[14] Ahmed Fadil. et al. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement, scientific reports,
4 : 6392,(2014)
[15] 成功大學,陳品承,表面電漿增強奈米矽發光元件之發光效率研究(2009)
[16] Andriy Shevchenko et al. Optical wave parameters for spatially dispersive
and anisotropic nanomaterials, optic express,25(8),8005 (2017)
[17]吳民耀,劉威志,表面電漿子理論與模擬,物理雙月刊(廿八卷二期)(2006)
[18]蔡定平,金屬表面電漿簡介,物理雙月刊 (2006)
[19] Shuwen Zeng. et al. A Review on Functionalized Gold Nanoparticles
for Biosensing Applications, Plasmonics,6,491-506 (2011)
[20] Jean-Claude Tinguely, et al. Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness, BioNanoSci,1,128-135 (2011)
[21]黃凱麟,氮化物表面電漿生醫感測之理論分析, 國立中央大學光電科學與工程學系碩士論文(2016)
[22] Hana Tzu-Han Lin. et al. A Large-Area Nanoplasmonic Sensor Fabricated by
Rapid Thermal Annealing Treatment for Label-Free and Multi-Point Immunoglobulin Sensing, Nanomaterials, 7,100 (2017)
[23] K. Watanabe, Formation and structure of inverted hexagonal pyramid defects in multiple quantum wells InGaN/GaN, Appl. Phys. Lett. 82, 718 (2003).
[24] 王凱弘,“多層氮化銦鎵/氮化鎵量子井光學特性之研究”,國立中山大
學電機工程學系研究所,碩士論文 (2003)
[25] 林坤宏’’不同量子井厚度下之氮化銦鎵/氮化鎵多層量子井光學與結構特性之研究’’義守大學, 電子工程學系,碩士論文 (2009)
[26] S. Mahanty. et al.V-shaped defects in InGaNrGaN multiquantum wells and radiative efficiency improvement, Mater. Lett. 41(1999)
[27] 柯宗憲,王德忠,盧廷昌,郭浩中,先進光電材料─非極性氮化鎵磊晶的發展,光連雙月刊,Vol. 69,頁51-55 (2007)
[28] Yulin Meng. et al. Red Emission of InGaN/GaN Multiple-Quantum-Well
Light-Emitting Diode Structures With Indium-Rich Clusters, Phys. Status Solidi A (2018)
[29] Chiao Yun Chang, et al. Boosting brightness with V-shaped pits (2015)
www.compoundsemiconductor.net
電子全文 電子全文(網際網路公開日期:20240701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔