(3.230.76.48) 您好!臺灣時間:2021/04/13 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭翰
研究生(外文):Han Cheng
論文名稱(外文):MHD simulations on the formation of Fermi Bubbles with magnetic field
指導教授:高仲明
指導教授(外文):Chung-Ming Ko
學位類別:碩士
校院名稱:國立中央大學
系所名稱:天文研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:78
中文關鍵詞:數值模擬費米泡泡磁場銀河中心磁流體力學潮汐裂解事件
外文關鍵詞:simulationFermi Bubblesmagnetic fieldGalactic centerMHDFLASHtidal disruption eventTDE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
以可見光觀測,銀河系看起來是個扁平的盤狀結構,然而,以伽瑪射線波段觀測,除了扁平的盤狀結構外,在銀河中心方向的銀暈,還能觀測到兩個數千個秒差距的巨大泡泡狀結構。這泡泡狀的結構被叫做費米泡泡(Fermi bubbles),它的形成機制在許多文獻中被探討,而我們對於其中一項機制—恆星被銀河中心大質量黑洞捕獲造成的潮汐裂解事件(tidal disruption events)深感興趣,我們利用數值模擬的方法來研究費米泡泡的形成機制及其演化,銀暈中的氣體被模擬為呈指數衰減的大氣,潮汐裂解事件被模擬為一個巨大的能量釋放(爆炸事件),連續的爆炸事件發生在靠近銀河中心的小體積內,可以使物質不斷被推出、造成費米泡泡,我們改變每次爆炸的能量釋放、爆炸的時間間隔,系统性地調查費米泡泡的形成機制。從模擬結果發現,在相同的總能量釋放下,多次爆炸在泡泡內部造成的紊亂程度會比單次爆炸更為明顯。此外,周圍磁場的配置也被加以探討,磁場會阻礙泡泡的發展,在磁場壓力大的地方更為明顯。(相同能量釋放、爆炸時間間隔的)多次爆炸事件下,泡泡內部的亂流在有加磁場的狀況下比沒加磁場的狀況下還要明顯。最後,為了舉例說明,我們計算出模擬結果的X光亮度(projected X-ray emission)並與ROSAT在1.5千電子伏特波段的X-ray影像進行了比較。
In visible light, our Galaxy looks like a flat disk to us. However, in gamma ray, in addition to a flat disk similar to visible light there are two giant bubble-like structures extending several kpc in the Galactic halo in the direction of the Galactic center. The two structures are called Fermi bubbles and numerous mechanisms have been proposed for their formation. We are particular interested in the scenario of a series of tidal disruption events (TDEs) initiated by repeated stellar captures by the supermassive black hole in the Galactic center. We use numerical simulation to study the formation and evolution of the Fermi bubbles. The ambient gas in the halo is modeled as a layered exponential atmosphere, and the TDE is modeled as an outburst of a large amount of energy confined in a small volume enclosing the center (a.k.a. an explosion at the center). The series of explosions can drive an outflow and create the bubbles. A systematic survey of the formation process is performed. We vary the energy of each explosion, the interval between two explosions. With the same total energy, multiple explosion events give a more turbulent inner structure than a single event. Furthermore, we also examine different configurations of ambient magnetic field. In general, magnetic field hinders the development of the bubbles, especially in the high magnetic pressure region. For multiple explosion events with the same energy of each explosion and the same interval between two explosions, the case with magnetic field is more turbulent than the one without magnetic field. Finally, for illustration, we compute the projected X-ray emission from our simulation, and compare with the ROSAT X-ray map at 1.5 keV.
Chapter 1 Introduction p.1
1-1 Overview of Related Observations p.2
1-1-1 Gamma-ray Bubbles p.2
1-2-2 X-ray Map p.3
1-1-3 Microwave Haze p.3
1-1-4 Radio and Microwave Polarization Data p.4
1-2 Overview of Related Models p.5
1-2-1 High Energy Activities at the Galactic Center p.5
1-2-2 Emission Mechanisms and Cosmic Ray Acceleration p.5
1-2-3 Repeated Stellar Capture Model p.10

Chapter 2 Simulation Code p.12
2-1 Simulation Code: FLASH p.12
2-1-2 The Major Differences Between 8Wave and USM MHD Solver p.13
2-2 Tests of The Performance of FLASH: Sedov Explosion Problem p.14

Chapter 3 Models and Initial Conditions p.16
3-1 The Star Captured Model p.16
3-2 Exponential Isothermal Atmosphere p.16
3-3 Magnetic Field Configurations p.17
3-4 Units and Initial Conditions p.19
3-5 Abbreviation in This Article p.21

Chapter 4 Tests of Program p.23
4-1 The Comparisons of Two Different MHD Solvers: 8Wave and USM p.23
4-2 Comparing 2D and 3D Simulation Results p.24
4-3 Grid Size p.26

Chapter 5 Results and Discussions p.27
5-1 Comparison of Analytic and Numerical Solutions p.28
5-2 Simulations of Fermi Bubbles without Magnetic Field p.30
5-2-1 Single Explosion p.30
5-2-2 Comparison of Single Explosion and Multiple Explosions p.31
5-2-3 Special Features of Multiple Explosions p.34
5-3 Simulation of Fermi Bubbles with Magnetic Field p.43
5-3-1 Multiple Explosions with Different Initial Magnetic Field Configurations p.43
5-3-2 Velocity distribution of the fiducial model B_p p.47
5-3-3 Magnetic Pressure at the Mid-Plane of the fiducial model B_p p.50
5-3-4 Scale Height of Magnetic Pressure of the fiducial model B_p p.52
5-4 A Case for Comparing with Observations p.54

Chapter 6 Summary p.57

Appendix A p.60
References p.65
Alexander, T. 2005, Phys. Rep., 419, 65
Brackbill, J., & Barnes, D. C. 1980, JCP, 35, 426
Carretti, E., Crocker, R. M., Staveley-Smith, L. et al. 2013, Nature, 493, 66
Chang, Y. W. 2013, “A numerical simulation survey on the outflow from the Galactic center”, Master thesis, National Central University (Taiwan).
Cheng, K. S., Chernyshov, D. O., Dogiel, V. A., & Ko, C. M. 2015a, ApJ, 799, 112
Cheng, K. S., Chernyshov, D. O., Dogiel, V. A., & Ko, C. M. 2015b, ApJ, 804, 135
Cheng, K. S., Chernyshov, D. O., Dogiel, V. A., & Ko, C. M. 2014, ApJ, 790, 23
Cheng, K. S., Chernyshov, D. O., Dogiel, V. A., Ko, C. M., & Ip, W. H. 2011, ApJ, 731, L17
Chernyshov, D. O., Cheng, K. S., Dogiel, V. A. et al. 2011, Proc. 32nd ICRC (Beijing) (arXiv:1109.2619v1)
Crocker, R. M., & Aharonian F., 2011, PhRvL, 106, 101102
Crocker, R. M. 2012, MNRAS, 423, 3512
Crocker, R. M., Bicknell, G. V., Carretti, E. et al. 2014, ApJL, 791, L20
Crocker, R. M., Bicknell, G. V., Taylor, A. M., & Carretti, E. 2015, ApJ, 808, 107
Dobler, G., Finkbeiner, D. P., Cholis, I., Slatyer, T., & Weiner, N. 2010, ApJ, 717, 825
Dogiel, V. A., Cheng, K. S., Chernyshov, D. O., & Ko, C. M. 2014, IAU Sym. 303: The Galactic Center: Feeding and Feedback in a Normal Galactic Nucleus, Proceedings of the International Astronomical Union 9, Symposium S303, eds. L.O. Sjouwerman, C.C. Lang & J. Ott, p.399 (Cambridge University Press)
Draine, B. T. 2011. “Physics of the interstellar and intergalactic medium” (Princeton, NJ: Princeton Univ. Press)
Dubey, A., Daley, C., ZuHone, J., Ricker, P. M., Weide, K., & Graziani, C. 2012, ApJS, 201, 27
Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659
Ferrière, K. 2001, RvMP, 73, 1031
Ferrière, K., Gillard, W., & Jean, P. 2007, A&A, 467, 611
Ferrière, K. 2012, A&A, 540, A50
Finkbeiner, D. P. 2004, ApJ, 614, 186
FLASH User’s Guide 2017, Version 4.5, Flash Center for Computational Science, University of Chicago.
Fryxell, B., Olson, K., Ricker, P. et al. 2000, ApJS, 131, 273
Guo, F., & Mathews, W. G. 2012, ApJ, 756, 181
Guo, F., Mathews, W. G., Dobler, G., & Oh, S. P. 2012, ApJ, 756, 182
Hinshaw, G., Weiland J. L., Hill R. S. et al. 2009, ApJS, 180, 225
Jones, D. I., Crocker, R. M., Reich, W., Ott, J., & Aharonian, F. A. 2012, ApJ, 747, L12
Kataoka, J., Tahara, M., Totani, T., et al. 2013, ApJ, 779, 57
Kataoka, J., Tahara, M., Totani, T., et al. 2015, ApJ, 807, 77
Ko, C. M., Chernyshov, D. O., Cheng, H., Dai, L., & Dogiel V. A. 2019, arXiv:1904.03958
Koyama, K., Hyodo Y., Inui T., et al. 2007, PASJ, 59, 245
Lee, D. 2013, JCP, 243, 269
Lee, D. & Deane, A. E. 2009, JCoPh, 228, 952
Miller, M. J., & Bregman, J. N. 2016, ApJ, 829, 9
Mou, G., Yuan F., Gan, Z., & Sun, M. 2015, ApJ, 811, 37
Planck Collaboration 2013, A&A, 554, A139
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & DeZeeuw, D. L. 1999, JCP, 154, 284
Pshirkov, M. S., Vasiliev, V. V., Postnov, K. A. 2016, MNRAS Letters, 459, 1, L76
Sakai, K., Yao, Y., Mitsuda, K., et al. 2014, Pub. Astron. Soc. J., 66, 83
Sarkar, K.C., Nath, B.B., Sharma, P. 2015, MNRAS, 453, 3827
Sasaki, K., Asano, K., Terasawa, T. 2015, ApJ, 814, 93
Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (New York: Academic)
Snowden, S. L., Egger, R., Freyberg, M. J., et al. 1997, ApJ, 485, 125
Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ, 724, 1044
Tahara, M., Kataoka, J., Takeuchi, Y., et al. 2015, ApJ, 802, 91
Tasker E. J., Brunino R., Mitchell N. L., et al., 2008, MNRAS, 390, 1267
Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ, 218, 377
Yang, H. Y. K., Ruszkowski, M., Zweibel, E. G. 2018. Galaxies 6, 29
Yang, H. Y. K., Ruszkowski, M. 2017, ApJ, 850, 2
Yang, H. Y. K., Ruszkowski, M., & Zweibel, E. 2013, MNRAS, 436, 2734
Yang, H. Y. K., Ruszkowski, M., Ricker, P. M., et al. 2012, ApJ, 761, 185
Zubovas, K. & Nayakshin, S. 2012, MNRAS, 424, 666
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔