|
[1] C.M. Bishop, Pattern recognition and machine learning, springer2006. [2] J.M. Schmitt, "Optical coherence tomography (OCT): a review", IEEE Journal of selected topics in quantum electronics, 5 1205-1215, 1999. [3] A.L. Samuel, "Some studies in machine learning using the game of checkers", IBM Journal of research and development, 44 206-226, 2000. [4] T.M. Mitchell, The discipline of machine learning, Carnegie Mellon University, School of Computer Science, Machine Learning …2006. [5] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press2016. [6] H.T.U. Smith, "Manual of Photographic Interpretation. R. N. Colwell Photogrammetry and Photo-interpretation (with a Section on Applications to Forestry). S. H. Spurr", The Journal of Geology, 70 757-758, 1962. [7] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. [8] A.K.a.I.S.a.G.E. Hinton, Imagenet classification with deep convolutional neural networks, 2012. [9] J. Uhrig, M. Cordts, U. Franke, T. Brox, Pixel-Level Encoding and Depth Layering for Instance-Level Semantic Labeling, Springer International Publishing, Cham, pp. 14-25, 2016. [10] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759-8768. [11] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors", arXiv preprint arXiv:1207.0580, DOI 2012. [12] K. Simonyan, A. Zisserman, "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556, DOI 2014. [13] F. Fleuret, "EE-559–Deep learning 6.1. Benefits of depth", DOI. [14] S. Targ, D. Almeida, K. Lyman, "Resnet in resnet: Generalizing residual architectures", arXiv preprint arXiv:1603.08029, DOI 2016. [15] H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, Proceedings of the IEEE international conference on computer vision, pp. 1520-1528, 2015. [16] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431-3440, 2015. [17] M. Schmidt, G. Fung, R. Rosales, Fast optimization methods for l1 regularization: A comparative study and two new approaches, European Conference on Machine Learning, Springer, pp. 286-297, 2007. [18] D. Steinkraus, I. Buck, P. Simard, Using GPUs for machine learning algorithms, Eighth International Conference on Document Analysis and Recognition (ICDAR'05), IEEE, 2005, pp. 1115-1120. [19] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press2016. [20] D. Steinkraus, I. Buck, P. Simard, Using GPUs for machine learning algorithms, Eighth International Conference on Document Analysis and Recognition (ICDAR'05), IEEE, pp. 1115-1120, 2005. [21] S. Elwakil, S. El-Labany, M. Zahran, R. Sabry, "Modified extended tanh-function method for solving nonlinear partial differential equations", Physics Letters A, 299 179-188, 2002. [22] J. Schmidt-Hieber, "Nonparametric regression using deep neural networks with ReLU activation function", arXiv preprint arXiv:1708.06633, DOI 2017. [23] M. Tommiska, "Efficient digital implementation of the sigmoid function for reprogrammable logic", IEE Proceedings-Computers and Digital Techniques, 150 403-411, 2003. [24] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp. 1097-1105, 2012. [25] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp. 315-323, 2011. [26] M.K. Johnson, Applied Predictive Modeling, Springer, New York, NY. [27] S. Ruder, "An overview of gradient descent optimization algorithms", arXiv preprint arXiv:1609.04747, DOI 2016. [28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [29] S. Ioffe, C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", arXiv preprint arXiv:1502.03167, DOI 2015. [30] D. Mishkin, Matas, Jiri, "All you need is a good init", CoRR, abs/1511.06422 2016. [31] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, pp. 234-241, 2015. [32] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587, DOI 2017. [33] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, N. Sang, Bisenet: Bilateral segmentation network for real-time semantic segmentation, Proceedings of the European Conference on Computer Vision (ECCV), pp. 325-341, 2018. [34] S. Woo, J. Park, J.-Y. Lee, I. So Kweon, Cbam: Convolutional block attention module, Proceedings of the European Conference on Computer Vision (ECCV), pp. 3-19, 2018. [35] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, European conference on computer vision, Springer, pp. 818-833, 2014. [36] S. Zagoruyko, N. Komodakis, "Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer", arXiv preprint arXiv:1612.03928, DOI 2016. [37] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881-2890, 2017. [38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015. [39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016. [40] T. Dozat, "Incorporating nesterov momentum into adam", DOI 2016. [41] S. Mannor, D. Peleg, R. Rubinstein, The cross entropy method for classification, Proceedings of the 22nd international conference on Machine learning, ACM, pp. 561-568, 2005. [42] P.-T. De Boer, D.P. Kroese, S. Mannor, R.Y. Rubinstein, "A tutorial on the cross-entropy method", Annals of operations research, 134 19-67, 2005. [43] V. Thada, V. Jaglan, "Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm", International Journal of Innovations in Engineering and Technology, 2 202-205, 2013.
|