1. Inside (2019),“Google Alpha Go,”(accessed 2019/03/10, available at: https://www.inside.com.tw/article/9071-how-alphago-inspire-human-in-go).
2. Wikipedia (2019),“圍棋,”(accessed 2019/03/10, available at: https://zh.wikipedia.org/wiki/%E5%9B%B4%E6%A3%8B).
3. Su, C. T., Chen, L. S., & Yih, Y. (2006). Knowledge acquisition through information granulation for imbalanced data. Expert Systems with applications, 31(3), 531-541.
4. Su, C. T., Yang, C. H., Hsu, K. H., & Chiu, W. K. (2006). Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data. Computers & mathematics with applications, 51(6-7), 1075-1092.
5. Liao, T. W. (2008). Classification of weld flaws with imbalanced class data. Expert Systems with Applications, 35(3), 1041-1052.
6. Chae, Y. M., Ho, S. H., Cho, K. W., Lee, D. H., & Ji, S. H. (2001). Data mining approach to policy analysis in a health insurance domain. International journal of medical informatics, 62(2-3), 103-111.
7. Barandela, R., Sánchez, J. S., Garca, V., & Rangel, E. (2003). Strategies for learning in class imbalance problems. Pattern Recognition, 36(3), 849-851.
8. Zhou, Z. H., & Liu, X. Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge & Data Engineering, (1), 63-77.
9. An, A., & Wang, Y. (2001). Comparisons of classification methods for screening potential compounds. In Proceedings 2001 IEEE International Conference on Data Mining (pp. 11-18). IEEE.
10. Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM Sigkdd Explorations Newsletter, 6(1), 7-19.
11. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
12. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
13. Bernhard Scholkopf and Alexander Smola. Support vector machine. KDD 99 The First Annual International Conference on Knowledge Discovery in Data, pages 321–357, 2001.
14. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463-484.
15. Sun, Z., Song, Q., & Zhu, X. (2012). Using coding-based ensemble learning to improve software defect prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1806-1817.
16. Yang, Z., Tang, W. H., Shintemirov, A., & Wu, Q. H. (2009). Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(6), 597-610.
17. Zhu, Z. B., & Song, Z. H. (2010). Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis. Chemical Engineering Research and Design, 88(8), 936-951.
18. Khreich, W., Granger, E., Miri, A., & Sabourin, R. (2010). Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8), 2732-2752.
19. Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A., & Tourassi, G. D. (2008). Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural networks, 21(2-3), 427-436.
20. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.
21. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.
22. Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on knowledge and Data Engineering, 17(3), 299-310.
23. Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 6(1), 20-29.
24. Napierała, K., Stefanowski, J., & Wilk, S. (2010, June). Learning from imbalanced data in presence of noisy and borderline examples. In International Conference on Rough Sets and Current Trends in Computing (pp. 158-167). Springer, Berlin, Heidelberg.
25. 陳逸真. (2017). Comparison of Imbalanced Data Classification Methods., (頁 17~18).
26. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
27. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
28. Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H., ... & Haley, C. S. (2015). Application of high-dimensional feature selection: evaluation for genomic prediction in man. Scientific reports, 5, 10312.
29. Li, T. S. (2006). Feature selection for classification by using a GA-based neural network approach. Journal of the Chinese Institute of Industrial Engineers, 23(1), 55-64.
30. Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A data mining perspective (Vol. 453). Springer Science & Business Media.
31. Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media.
32. Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1), 1-6.
33. 譚琳,“非平衡數據挖掘簡介”,計算機科學與技術研討會,南京,2008。
34. Weiss, G. M. (2004). Mining with rarity: a unifying framework. ACM Sigkdd Explorations Newsletter, 6(1), 7-19.
35. Barandela, R., Rangel, E., Sánchez, J. S., & Ferri, F. J. (2003, November). Restricted decontamination for the imbalanced training sample problem. In Iberoamerican Congress on Pattern Recognition (pp. 424-431). Springer, Berlin, Heidelberg.
36. Barandela, R., Sánchez, J. S., Garca, V., & Rangel, E. (2003). Strategies for learning in class imbalance problems. Pattern Recognition, 36(3), 849-851.
37. Dorronsoro, J. R., Ginel, F., Sgnchez, C., & Cruz, C. S. (1997). Neural fraud detection in credit card operations. IEEE transactions on neural networks, 8(4), 827-834.
38. Tseng, Y. H., & Chien, J. T. (2017). International Journal of Computational Linguistics & Chinese Language Processing, Volume 22, Number 1, June 2017. International Journal of Computational Linguistics & Chinese Language Processing, Volume 22, Number 1, June 2017, 22(1).
39. Inside (2019),“監督式學習,”(accessed 2019/03/10, available at: https://www.inside.com.tw/article/9945-machine-learning).
40. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
41. Wikipedia(2019),“遺傳演算法,”(accessed 2019/03/15, available at: https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95).
42. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
43. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
44. Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009, April). Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In Pacific-Asia conference on knowledge discovery and data mining (pp. 475-482). Springer, Berlin, Heidelberg.
45. Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. Comparison of overfitting and overtraining. Journal of chemical information and computer sciences, 35(5), 826-833.
46. Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence research, 61, 863-905.
47. Mi, Y. (2013). Imbalanced classification based on active learning SMOTE. Research Journal of Applied Sciences, Engineering and Technology, 5(3), 944-949.
48. Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg.
49. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1322-1328). IEEE.
50. More, A. (2016). Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv preprint arXiv:1608.06048.
51. Medium(2019),“ADASYN,”(accessed 2019/03/15, available at: https://medium.com/@ruinian/an-introduction-to-adasyn-with-code-1383a5ece7aa).
52. He, H., & Garcia, E. A. (2008). Learning from imbalanced data. IEEE Transactions on Knowledge & Data Engineering, (9), 1263-1284.
53. Mani, I., & Zhang, I. (2003, August). kNN approach to unbalanced data distributions: a case study involving information extraction. In Proceedings of workshop on learning from imbalanced datasets (Vol. 126).
54. Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics, (3), 408-421.
55. Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine learning, 38(3), 257-286.
56. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
57. 雷祖強, 周天穎, 萬絢, 楊龍士, & 許晉嘉. (2007). 空間特徵分類器支援向量機之研究. Journal of Photogrammetry and Remote Sensing, 12(2), 145-163.
58. Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H., ... & Colliot, O. (2011). Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical image analysis, 15(5), 729-737.
59. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984.,
60. Breiman, L. (2017). Classification and regression trees. Routledge.
61. Scikit-learn (2019),“Decision Trees,”(accessed 2019/02/10, available at: https://scikit-learn.org/stable/modules/tree.html).
62. Scikit-learn (2019),“StandardScaler,”(accessed 2019/02/10, available at: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html).
63. Harvard Business Review (2019),“garbage-in, garbage-out,”(accessed 2019/02/05, available at: https://hbr.org/2018/04/if-your-data-is-bad-your-machine-learning-tools-are-useless).
64. Provost, F., & Kohavi, R. (1998). Guest editors' introduction: On applied research in machine learning. Machine learning, 30(2), 127-132.
65. Marimont, R. B., & Shapiro, M. B. (1979). Nearest neighbour searches and the curse of dimensionality. IMA Journal of Applied Mathematics, 24(1), 59-70.
66. Chávez, E., Navarro, G., Baeza-Yates, R., & Marroquín, J. L. (2001). Searching in metric spaces. ACM computing surveys (CSUR), 33(3), 273-321.
67. Wikipedia (2019),“維數災難,”(accessed 2019/04/15, available at: https://zh.wikipedia.org/wiki/%E7%BB%B4%E6%95%B0%E7%81%BE%E9%9A%BE.
68. Johnstone, I. M., & Lu, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association, 104(486), 682-693.
69. Lu, Y., Cohen, I., Zhou, X. S., & Tian, Q. (2007, September). Feature selection using principal feature analysis. In Proceedings of the 15th ACM international conference on Multimedia (pp. 301-304). ACM.
70. Aksoy, S., & Haralick, R. M. (2001). Feature normalization and likelihood-based similarity measures for image retrieval. Pattern recognition letters, 22(5), 563-582.
71. Wikipedia(2019),“Feature scaling,”(accessed 2019/05/01, available at: https://en.wikipedia.org/wiki/Feature_scaling).
72. Archive(2019),“normalization,”(accessed 2019/04/20, available at: https://web.archive.org/web/20121230101134/http://www.qsarworld.com/qsar-statistics-normalization.php).
73. Wu, G., & Chang, E. Y. (2005). KBA: Kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge & Data Engineering, (6), 786-795.
74. KEEL (2019),“keel Imbalanced data sets,”(accessed 2018/10/10, available at: http://sci2s.ugr.es/keel/imbalanced.php).
75. Uottawa (2019),“NANA Imbalanced data sets,”(accessed 2018/10/10, available at: http://promise.site.uottawa.ca/SERepository/datasets-page.html).
76. Github (2019),“NANA Imbalanced data sets,”(accessed 2018/10/10, available at: https://github.com/klainfo/NASADefectDataset/tree/master/OriginalData/MDP).
77. You, C., Li, C., Robinson, D. P., & Vidal, R. (2018, September). A Scalable Exemplar-Based Subspace Clustering Algorithm for Class-Imbalanced Data. In European Conference on Computer Vision (pp. 68-85). Springer, Cham.
78. Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based undersampling in class-imbalanced data. Information Sciences, 409, 17-26.
79. Zhai, J., Zhang, S., & Wang, C. (2017). The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. International Journal of Machine Learning and Cybernetics, 8(3), 1009-1017.
80. Sun, Y., Kamel, M. S., & Wang, Y. (2006, December). Boosting for learning multiple classes with imbalanced class distribution. In Sixth International Conference on Data Mining (ICDM'06) (pp. 592-602). IEEE.
81. 林冠宇,“發展改良試支持向量資料摸述改善不平衡資料分類”,國立臺北科技大學工業工程與管理學系碩士論文,201382. 林佳蒨,“支援向量機於不平衡資料類別問題之應用”,國立暨南國際大學資訊管理學系碩士論文,201283. 羅隆晉,“以集群為基礎之多分類器模型對不平衡資料預測之研究”,銘傳大學工程學系碩士論文,201084. 張毓珊,“以集群為基礎之多分類器模型對不平衡資料預測之研究”,朝陽科技大學資訊管理學系碩士論文,2009