|
Aydoğan, E., Akcayol, M.A., 2016. A comprehensive survey for sentiment analysis tasks using machine learning techniques, in: 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). Presented at the 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–7. https://doi.org/10.1109/INISTA.2016.7571856 Blair, D.C., 1979. Information Retrieval, 2nd ed. C.J. Van Rijsbergen. London: Butterworths; 1979: 208 pp. Price: $32.50. J. Am. Soc. Inf. Sci. 30, 374–375. https://doi.org/10.1002/asi.4630300621 Chapelle, O., Scholkopf, B., Eds, A.Z., 2009. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw. 20, 542–542. https://doi.org/10.1109/TNN.2009.2015974 Choudhury, M.D., Gamon, M., Counts, S., Horvitz, E., 2013. Predicting Depression via Social Media, in: Seventh International AAAI Conference on Weblogs and Social Media. Presented at the Seventh International AAAI Conference on Weblogs and Social Media. Daniulaityte, R., Chen, L., Lamy, F.R., Carlson, R.G., Thirunarayan, K., Sheth, A., 2016. “When ‘Bad’ is ‘Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health Surveill. 2, e162. https://doi.org/10.2196/publichealth.6327 Denecke, K., Deng, Y., 2015. Sentiment analysis in medical settings: New opportunities and challenges. Artif. Intell. Med. 64, 17–27. https://doi.org/10.1016/j.artmed.2015.03.006 Fang, X., Zhan, J., 2015. Sentiment analysis using product review data. J. Big Data 1, 1–14. https://doi.org/10.1186/s40537-015-0015-2 Gohil, S., Vuik, S., Darzi, A., 2018. Sentiment Analysis of Health Care Tweets: Review of the Methods Used. JMIR Public Health Surveill. 4, e43. https://doi.org/10.2196/publichealth.5789 Greaves, F., Laverty, A.A., Cano, D.R., Moilanen, K., Pulman, S., Darzi, A., Millett, C., 2014. Tweets about hospital quality: a mixed methods study. BMJ Qual. Saf. 23, 838–846. https://doi.org/10.1136/bmjqs-2014-002875 Greaves, F., Ramirez-Cano, D., Millett, C., Darzi, A., Donaldson, L., 2013. Use of sentiment analysis for capturing patient experience from free-text comments posted online. J. Med. Internet Res. 15, e239. https://doi.org/10.2196/jmir.2721 Hirata, M., Onodera, H., Suzuki, M., 2016. Determination of the End of Positioning Phase Using SVM: Kernel Choice and Parameter Tuning**This work was supported by JSPS KAKENHI Grant Number 25420429. IFAC-Pap., 7th IFAC Symposium on Mechatronic Systems MECHATRONICS 2016 49, 103–108. https://doi.org/10.1016/j.ifacol.2016.10.519 Huppertz, J.W., Otto, P., 2018. Predicting HCAHPS scores from hospitals’ social media pages: A sentiment analysis. Health Care Manage. Rev. 43, 359. https://doi.org/10.1097/HMR.0000000000000154 Hussain, M., Wajid, S.K., Elzaart, A., Berbar, M., 2011. A Comparison of SVM Kernel Functions for Breast Cancer Detection, in: Imaging and Visualization 2011 Eighth International Conference Computer Graphics. Presented at the Imaging and Visualization 2011 Eighth International Conference Computer Graphics, pp. 145–150. https://doi.org/10.1109/CGIV.2011.31 Jiang, Z., Li, L., Huang, D., Liuke Jin, 2015. Training word embeddings for deep learning in biomedical text mining tasks, in: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Presented at the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 625–628. https://doi.org/10.1109/BIBM.2015.7359756 Jiménez-Zafra, S.M., Martín-Valdivia, M.T., Molina-González, M.D., Ureña-López, L.A., 2019. How do we talk about doctors and drugs? Sentiment analysis in forums expressing opinions for medical domain. Artif. Intell. Med., Extracting and Processing of Rich Semantics from Medical Texts 93, 50–57. https://doi.org/10.1016/j.artmed.2018.03.007 Johnson, R., Zhang, T., 2014. Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. ArXiv14121058 Cs Stat. Kalarani, P., Selva Brunda, S., 2018. Sentiment analysis by POS and joint sentiment topic features using SVM and ANN. Soft Comput. https://doi.org/10.1007/s00500-018-3349-9 Korkontzelos, I., Nikfarjam, A., Shardlow, M., Sarker, A., Ananiadou, S., Gonzalez, G.H., 2016. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. J. Biomed. Inform. 62, 148–158. https://doi.org/10.1016/j.jbi.2016.06.007 Lee, D., 2013. Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. Li, J., Fong, S., Zhuang, Y., Khoury, R., 2016. Hierarchical classification in text mining for sentiment analysis of online news. Soft Comput. 20, 3411–3420. Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2, 18–22. Liu, B., Zhang, L., 2012. A Survey of Opinion Mining and Sentiment Analysis, in: Aggarwal, C.C., Zhai, C. (Eds.), Mining Text Data. Springer US, Boston, MA, pp. 415–463. https://doi.org/10.1007/978-1-4614-3223-4_13 Liu, Y., Bi, J.-W., Fan, Z.-P., 2017. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inf. Sci. 394–395, 38–52. https://doi.org/10.1016/j.ins.2017.02.016 Lowe, R., Pow, N., Serban, I., Pineau, J., 2015. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems. ArXiv150608909 Cs. Manek, A.S., Shenoy, P.D., Mohan, M.C., R, V.K., 2017. Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web 20, 135–154. https://doi.org/10.1007/s11280-015-0381-x Manning, C., Raghavan, P., Schütze, H., 2010. Introduction to Information Retrieval. Nat. Lang. Eng. 16, 100–103. Medlock, B., 2003. A Language Model Approach to Spam Filtering. Melville, P., Gryc, W., Lawrence, R.D., 2009. Sentiment Analysis of Blogs by Combining Lexical Knowledge with Text Classification, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09. ACM, New York, NY, USA, pp. 1275–1284. https://doi.org/10.1145/1557019.1557156 Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013a. Efficient Estimation of Word Representations in Vector Space. ArXiv13013781 Cs. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013b. Distributed Representations of Words and Phrases and their Compositionality, in: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (Eds.), Advances in Neural Information Processing Systems 26. Curran Associates, Inc., pp. 3111–3119. Moraes, R., Valiati, J.F., Gavião Neto, W.P., 2013. Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Syst. Appl. 40, 621–633. https://doi.org/10.1016/j.eswa.2012.07.059 Moraes, R., Valiati, J.F., Neto, W.P.G., 2018. Unbalanced sentiment classification: an assessment of ANN in the context of sampling the majority class (No. e26618v1). PeerJ Inc. https://doi.org/10.7287/peerj.preprints.26618v1 Pak, A., Paroubek, P., 2010. Twitter as a corpus for sentiment analysis and opinion mining., in: LREc. pp. 1320–1326. Paliwal, S., Khatri, S.K., Sharma, M., 2019. Sentiment Analysis and Prediction Using Neural Networks, in: Luhach, A.K., Singh, D., Hsiung, P.-A., Hawari, K.B.G., Lingras, P., Singh, P.K. (Eds.), Advanced Informatics for Computing Research, Communications in Computer and Information Science. Springer Singapore, pp. 458–470. Peng, Y., Moh, M., Moh, T., 2016. Efficient adverse drug event extraction using Twitter sentiment analysis, in: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Presented at the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1011–1018. https://doi.org/10.1109/ASONAM.2016.7752365 Pennington, J., Socher, R., Manning, C., 2014. Glove: Global Vectors for Word Representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1532–1543. https://doi.org/10.3115/v1/D14-1162 Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep contextualized word representations. ArXiv180205365 Cs. Ramos, J., 2003. Using TF-IDF to Determine Word Relevance in Document Queries. Safavian, S.R., Landgrebe, D., 1991. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21, 660–674. https://doi.org/10.1109/21.97458 Sahu, T.P., Ahuja, S., 2016. Sentiment analysis of movie reviews: A study on feature selection classification algorithms, in: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom). Presented at the 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), pp. 1–6. https://doi.org/10.1109/MicroCom.2016.7522583 Salas-Zárate, M.D.P., Medina-Moreira, J., Lagos-Ortiz, K., Luna-Aveiga, H., Rodríguez-García, M.Á., Valencia-García, R., 2017a. Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach. Comput. Math. Methods Med. 2017, 5140631. https://doi.org/10.1155/2017/5140631 Salas-Zárate, M.D.P., Medina-Moreira, J., Lagos-Ortiz, K., Luna-Aveiga, H., Rodríguez-García, M.Á., Valencia-García, R., 2017b. Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach. Comput. Math. Methods Med. 2017, 5140631. https://doi.org/10.1155/2017/5140631 Shah, A.M., Yan, X., Shah, S.J., Khan, S., 2018. Use of Sentiment Mining and Online NMF for Topic Modeling Through the Analysis of Patients Online Unstructured Comments, in: Chen, H., Fang, Q., Zeng, D., Wu, J. (Eds.), Smart Health, Lecture Notes in Computer Science. Springer International Publishing, pp. 191–203. Sharma, A., Dey, S., 2012. An Artificial Neural Network Based Approach for Sentiment Analysis of Opinionated Text, in: Proceedings of the 2012 ACM Research in Applied Computation Symposium, RACS ’12. ACM, New York, NY, USA, pp. 37–42. https://doi.org/10.1145/2401603.2401611 Silva, N.F.F.D., Coletta, L.F.S., Hruschka, E.R., 2016. A Survey and Comparative Study of Tweet Sentiment Analysis via Semi-Supervised Learning. ACM Comput Surv 49, 15:1–15:26. https://doi.org/10.1145/2932708 Sreng, S., Maneerat, N., Hamamoto, K., Panjaphongse, R., 2018. Automated Diabetic Retinopathy Screening System Using Hybrid Simulated Annealing and Ensemble Bagging Classifier. Appl. Sci. 8, 1198. https://doi.org/10.3390/app8071198 Staiano, J., Guerini, M., 2014. DepecheMood: a Lexicon for Emotion Analysis from Crowd-Annotated News. ArXiv14051605 Cs. Uysal, A.K., Gunal, S., 2014. The impact of preprocessing on text classification. Inf. Process. Manag. 50, 104–112. https://doi.org/10.1016/j.ipm.2013.08.006 Yadav, S., Ekbal, A., Saha, S., Bhattacharyya, P., 2018. Medical sentiment analysis using social media: towards building a patient assisted system, in: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018). Yang, F.-C., Lee, A.J.T., Kuo, S.-C., 2016. Mining Health Social Media with Sentiment Analysis. J. Med. Syst. 40, 236. https://doi.org/10.1007/s10916-016-0604-4 Zhang, L., Wang, S., Liu, B., 2018. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, e1253. https://doi.org/10.1002/widm.1253
|