跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹盛焱
研究生(外文):Sheng-Yen Tsao
論文名稱:應用相關回饋之醫學字詞資訊於醫學查詢擴展之方法
論文名稱(外文):The application of the medical term information residing in relevance feedback for medical query expansion
指導教授:周世傑周世傑引用關係
指導教授(外文):Shih-Chieh Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:資訊檢索相關回饋醫學查詢擴展MeSHWord2Vec
外文關鍵詞:Information RetrievalMedical Query ExpansionRelevance FeedbackWord2VecMeSH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這數位化的時代醫學文獻、病歷、臨床紀錄等都已朝數位化的方向發展,每日所增長的量非常巨大,要如何有效管理及在必要時刻快速搜尋這些文件已成醫學檢索領域中重要的議題,但大多數使用者在搜尋時常因語意表達不清或是用詞模糊導致系統無法回傳有效的資訊給使用者。使用相關回饋(Relevance Feedback)的查詢擴展(Query Expansion)方法一直解是決這問題的主要方法之一,其中最著名的Rocchio演算法僅以字詞間的頻率來判斷,未考量字詞間其他可利用的資訊及專有名詞的重要性,因此本研究利用原始查詢與查詢結果作為基礎,主要利用Word2Vec模型所建立之醫學字詞向量以及MeSH主題詞表來分析相關回饋以及查詢字詞間所隱含之語意關係,萃取出相關回饋資訊內關鍵字詞,並利用MeSH主題字詞表以及Word2Vec模型進行字詞擴展,將其加入最後的查詢擴展集合,使查詢能更準確的回傳符合使用者需求之結果。本研實驗使用TREC 2007 Genomics資料集進行檢索效能驗證,最終結果統計本研究所提出之應用相關回饋之醫學字詞資訊於醫學查詢擴展之方法相較於Rocchio演算法在評估指標P@5提升20%、P@10提升11%、P@N提升13%、MAP提升17%以及PR Curve提升14%,顯示本研究檢索結果能更符合使用者需求。
The electronization of medical literature, medical record and clinical records are required in the information age. How to efficiently manage and search these huge data volume has become important issue in in medical retrieval domain. However, the search result sometimes is bad because user cannot effectively conversion his requirement to search keyword. Query expansion of Relevance feedback and is main method to solve this problem. Rocchio’s query expansion is most famous in relevance feedback. However, Rocchio’s method only focuses on term frequency and ignores other relationships between terms and medical terms. Therefore, this study is based on the user's original query and search results, our research uses the medical word embeddings by the Word2Vec model and the MeSH to analyze the semantic relationship between the relevant feedback and the query words, extract the important terms in the relevant feedback information, and use the MeSH and Word2Vec model for query expansion. This study used TREC 2007 Genomics dataset for performance evaluation of retrieval. The experimental results show that the application of the medical term information residing in relevance feedback for medical query expansion can improve the retrieval performance.
論文摘要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、前言 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究範圍與限制 2
1-3-1 研究範圍 2
1-3-2 研究限制 3
1-4 論文架構 3
二、文獻探討 4
2-1 查詢擴展(QUERY EXPANSION) 4
2-1-1 局部查詢擴展 (Local Query Expansion) 5
2-1-2 全域查詢擴展(Global Query Expansion) 5
2-2 相關回饋(RELEVANCE FEEDBACK) 6
2-2-1 相關回饋背景與應用 6
2-2-2 Rocchio演算法 8
2-3 TF-IDF 9
2-4 WORD2VEC介紹 10
2-5 醫學字詞向量發展 12
2-6 MESH (MEDICAL SUBJECT HEADINGS) 13
三、研究方法 15
3-1 系統架構 15
3-2 方法設計 16
3-2-1 原始查詢結果處理 17
3-2-2 重要字詞處理 17
3-2-3 字詞語意分析處理 19
3-2-4 相關字詞語意擴展 21
四、實驗設計 23
4-1 實驗環境 23
4-2 實驗資料集 23
4-3 實驗評估指標 26
4-4 實驗流程 29
4-4-1 實驗一 29
4-4-2 實驗二 31
4-5 實驗結果 31
4-5-1 實驗一結果 31
4-5-2 實驗二結果 39
4-6 實驗結果討論 47
五、結論 49
5-1 結論與貢獻 49
5-2 未來研究方向 50
參考文獻 51
[1] A. L. Cochrane, Effectiveness and efficiency: random reflections on health services. Nuffield Provincial Hospitals Trust London, 1972.
[2] M. Crespo Azcárate, J. Mata Vázquez, and M. Maña López, "Improving image retrieval effectiveness via query expansion using MeSH hierarchical structure," Journal of the American Medical Informatics Association, vol. 20, no. 6, pp. 1014-1020, 2012.
[3] N. C. Ide, R. F. Loane, and D. Demner-Fushman, "Essie: a concept-based search engine for structured biomedical text," Journal of the American Medical Informatics Association, vol. 14, no. 3, pp. 253-263, 2007.
[4] W. Zhou, C. Yu, N. Smalheiser, V. Torvik, and J. Hong, "Knowledge-intensive conceptual retrieval and passage extraction of biomedical literature," in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007, pp. 655-662: ACM.
[5] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval. McGraw-Hill, Inc., 1986, p. 400.
[6] J. Rocchio, "Relevance feedback in information retrieval," The Smart retrieval system-experiments in automatic document processing, pp. 313-323, 1971.
[7] Y.-S. Lin, "The application of the term information residing in relevance feedback for query expansion," M.B.A. thesis, National Central University, Taiwan, 2015.
[8] Z.-L. Sun, "The application of semantic analysis in relevance feedback for query expansion," M.B.A. thesis, National Central University, Taiwan, 2018.
[9] W. Hersh, A. M. Cohen, L. Ruslen, and P. Roberts, TREC 2007 genomics track overview. 2007.
[10] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, "The vocabulary problem in human-system communication," Commun. ACM, vol. 30, no. 11, pp. 964-971, 1987.
[11] T. Lau and E. Horvitz, "Patterns of Search: Analyzing and Modeling Web Query Refinement," in UM99 User Modeling, Vienna, 1999, pp. 119-128: Springer Vienna.
[12] S. Zhang, B. He, and W. Fan, CBIA VT at TREC 2015 Clinical Decision Support Track -Exploring Relevance Feedback and Query Expansion in Biomedical Information Retrieval. 2015.
[13] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, "Analysis of a very large web search engine query log," SIGIR Forum, vol. 33, no. 1, pp. 6-12, 1999.
[14] C. Carpineto and G. Romano, "A Survey of Automatic Query Expansion in Information Retrieval," ACM Comput. Surv., vol. 44, no. 1, pp. 1-50, 2012.
[15] F. João Pinto and C. Pérez-Sanjulián, Automatic query expansion and word sense disambiguation with long and short queries using WordNet under vector model. 2008.
[16] T.-P. Approach For, Z. Shi, B. Gu, F. Popowich, and A. Sarkar, Synonym-based Query Expansion and Boosting-based Re-ranking. 2005.
[17] L. Araujo and J. R. Pérez-Agüera, "Improving Query Expansion with Stemming Terms: A New Genetic Algorithm Approach," in Evolutionary Computation in Combinatorial Optimization, Berlin, Heidelberg, 2008, pp. 182-193: Springer Berlin Heidelberg.
[18] Q. Chen, M. Li, and M. Zhou, Improving Query Spelling Correction Using Web Search Results. 2007, pp. 181-189.
[19] G. Salton, The SMART Retrieval System—Experiments in Automatic Document Processing. 1971.
[20] M. Dillon and J. Desper, "The use of automatic relevance feedback in Boolean retrieval systems," Journal of Documentation, vol. 36, no. 3, pp. 197-208, 1980.
[21] S. E. Robertson, C. J. v. Rijsbergen, and M. F. Porter, "Probabilistic models of indexing and searching," presented at the Proceedings of the 3rd annual ACM conference on Research and development in information retrieval, Cambridge, England, 1981.
[22] C. Buckley and G. Salton, "Optimization of relevance feedback weights," presented at the Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, Seattle, Washington, USA, 1995.
[23] R. Yong, T. S. Huang, M. Ortega, and S. Mehrotra, "Relevance feedback: a power tool for interactive content-based image retrieval," IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 5, pp. 644-655, 1998.
[24] R. Yan, A. Hauptmann, and R. Jin, "Multimedia search with pseudo-relevance feedback," presented at the Proceedings of the 2nd international conference on Image and video retrieval, Urbana-Champaign, IL, USA, 2003.
[25] Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan, "A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 723-742, 2012.
[26] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, "On the use of relevance feedback in IR-based concept location," in 2009 IEEE International Conference on Software Maintenance, 2009, pp. 351-360.
[27] D. Kelly and J. Teevan, "Implicit feedback for inferring user preference: a bibliography," SIGIR Forum, vol. 37, no. 2, pp. 18-28, 2003.
[28] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, "Accurately interpreting clickthrough data as implicit feedback," presented at the Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, Salvador, Brazil, 2005.
[29] J. Xu and W. B. Croft, "Query expansion using local and global document analysis," presented at the Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, Zurich, Switzerland, 1996.
[30] C. Manning, P. Raghavan, and H. Schütze, "Introduction to information retrieval," Natural Language Engineering, vol. 16, no. 1, pp. 100-103, 2010.
[31] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University Press, 2011.
[32] G. Salton, A. Wong, and C. S. Yang, "A vector space model for automatic indexing," Commun. ACM, vol. 18, no. 11, pp. 613-620, 1975.
[33] T. Mikolov, G. s. Corrado, K. Chen, and J. Dean, Efficient Estimation of Word Representations in Vector Space. 2013, pp. 1-12.
[34] A. Handler, "An empirical study of semantic similarity in WordNet and Word2Vec," 2014.
[35] K. Patel, D. Patel, M. Golakiya, P. Bhattacharyya, and N. Birari, Adapting Pre-trained Word Embeddings For Use In Medical Coding. 2017, pp. 302-306.
[36] NCBI (National Center for Biotechnology Information).PubMed. (n. d. ). Available: https://www.ncbi.nlm.nih.gov/pubmed/
[37] S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, and S. Ananiadou, Distributional semantics resources for biomedical text processing. 2013.
[38] A. Kosmopoulos, I. Androutsopoulos, and G. Paliouras, "Biomedical semantic indexing using dense word vectors in bioasq," J BioMed Semant Suppl BioMedl Inf Retr, vol. 3410, pp. 959136040-1510456246, 2015.
[39] Y. Wang et al., "A comparison of word embeddings for the biomedical natural language processing," Journal of biomedical informatics, vol. 87, pp. 12-20, 2018.
[40] NCBI (National Center for Biotechnology Information). MeSH. (n. d. ). Available: https://www.ncbi.nlm.nih.gov/mesh
[41] M. Taschwer, "Text-Based Medical Case Retrieval Using MeSH Ontology," in CLEF (Working Notes), 2013.
[42] K. Potts, "Web Design and Marketing Solutions for Business Websites," New York, USA: Apress, 2007, September, pp. 287-288.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 建構與應用特殊語詞資訊於文件重排序之研究
2. 應用語意分析資訊於相關回饋以進行文件分類之方法
3. 應用查詢擴展字詞及原始查詢字詞之語意資訊於文件重排序之方法
4. 應用於60GHz頻帶10Gbps單一載波基頻之脈波成形和同相與正交分量不平衡及直流偏壓準位偏移聯合補償設計
5. 次奈秒讀寫及次毫瓦每千兆赫茲之32Kb 5T靜態隨機存取記憶體和靜態隨機存取記憶體內運算之多位元緩衝器設計
6. 工作於次奈秒讀取且次毫瓦每千兆赫茲之28奈米製程0.45伏電壓之32Kb 5T之靜態隨機存取記憶體與記憶體內運算架構
7. 60 GHz 頻帶基於濾波器組多載波技術與循環前綴正交分頻多工加權重疊累加技術之數位基頻接收機設計及效能評估
8. 毫米波頻帶之單一使用者多輸入多輸出混合式預編碼與結合器設計
9. 毫米波之單一載波基頻接收機運用機器學習方法聯合補償類比前端不理想效應之架構
10. 次世代巨量天線徑分多重接取蜂巢式系統中手機同步及基地台搜尋方法之模擬與實現
11. 60GHz頻帶單一載波基頻接收機之同相與正交分量不平衡及直流偏壓準位偏移的聯合適應估測與補償設計
12. 整合查詢擴展融合與MeSH醫學字詞重排序之醫學文件檢索方法
13. 發展一個整合應用視覺詞頻率與文字語意於自動圖像註解系統的方法
14. 利用語意分析於相關回饋以進行查詢擴展之方法
15. 應用於高吞吐量無線通信系統之多速率LDPC解碼器的設計與實現