跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/12 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳孝綸
研究生(外文):Hsiao-Lun Chen
論文名稱:利用堆疊有機膜層製備氣體阻障膜之研究
論文名稱(外文):Multi gas barrier film deposited by RF magnetron sputtering system
指導教授:郭倩丞韋安琪
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:氣體阻障膜堆疊水氣穿透率
外文關鍵詞:WVTR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來隨著電子數位產品輕量化,可撓曲軟性電子產品的需求越來越高,封裝方面水氣穿透率皆小於10-3 g/m2/day,因此在塑料基板的氣體阻障膜鍍膜也變得日漸重要。
本實驗中利用電漿輔助化學氣相沉積法(PECVD),調控氧氣及六甲基二矽氧烷(hexamethyldisiloxane, HMDSO)做為反應氣體,鍍製有機Si-O-Si薄膜,氣體流量的控制能夠鍍製不同薄膜結構,似無機薄膜的網狀結構與有機薄膜的線狀及籠狀結構,將其互相堆疊成多層氣體阻障膜,並建立鈣測試量測系統測量薄膜水氣穿透率,利用表面輪廓測定儀、可見光穿透光譜儀、原子力顯微鏡及曲率半徑等,分析膜層物理及光學特性。
透過不同單層薄膜厚度的選用,在相同厚度下原本3-Pair (基板/緩衝層(50 nm)/阻水層(100 nm))堆疊中水氣穿透率為7 x 10-3 g/m2/day,而減薄後6-Pair (基板/緩衝層(25 nm)/阻水層(50 nm))水氣穿透率降低至小於量測極限3 x 10-3 g/m2/day,然而在4-Pair (基板/緩衝層(50 nm)/阻水層(100 nm))堆疊情況下,由於單層薄膜過厚導致無法承受曲率半徑2.43 cm之彎曲可能產生膜裂,使水氣穿透率上升,不過減薄後8-Pair (基板/緩衝層(25 nm)/阻水層(50 nm))堆疊下由於膜層耐彎性增加,使薄膜能夠承受曲率半徑2.43 cm之彎曲且水氣穿透率一樣達到其量測極限。
最佳參數中6-Pair (基板/緩衝層(25 nm)/阻水層(50 nm))曲率半徑從2.65 cm提升至2.98 cm、水氣穿透率小於3 x 10-3 g/m2/day、殘餘壓應力112 MPa、表面粗糙度1.28 nm、平均光穿透率達91.42%,厚度僅450 nm。
In recent years, electronic digital products become lighter, the demand for flexible electronic products become higher and higher. Due to the water vapor transmission rate(WVTR) of the packaging is less than 10-3 g/m2/day, gas barriers on plastic substrates coatings are also becoming increasingly important.
In this study, plasma enhance chemical vapor deposition (PECVD) was used to control oxygen and hexamethyldisiloxane (HMDSO), and organic Si-O-Si films were being coated on the plastic substrate. Changing the gas flow can coat different structures of films. Therefore, a gas barrier film is stacked by the network structure of an inorganic film and the linear and cage structure of an organic film interlaced. Besides, a calcium test system was established to measure the water vapor transmission rate of the films. The physical and optical properties of the film layers were analyzed by a-step, atomic force microscope(AFM), ultraviolet/visible spectrophotometer(UV/VIS) and radius of curvature.
At the same thickness, the WVTR of the 3-Pair (substrate/buffer layer (50 nm)/barrier layer (100 nm)) is 7 x 10-3 g/ m2/day, but WVTR of the 6-Pair (substrate/buffer layer (25 nm)/barrier layer (50 nm)) reduced to less than measurement limit of 3 x 10-3 g/m2/day. Besides, the film of 4-Pair (substrate/buffer layer (50 nm)/barrier layer (100 nm)) stacking is too thick to be curved of the curvature radius of 2.43 cm. This is the reason why a crack is produced. The film can support a curvature radius of 2.43 cm and WVTR is as close to its measurement limit due to the increased bending resistance of the film layer in the 8-Pair (substrate/buffer layer (25 nm)/water blocking layer (50 nm) stack.
To sum up, 6-Pair (S/Buffer (25 nm)/Barrier (50 nm)) radius of curvature increased from 2.65 cm to 2.98 cm, WVTR less than x 10-3. g/m2/day, residual stress 112 MPa, surface roughness 1.28 nm, average transmittance 91.42% and the thickness is only 450 nm.
摘要 i
Abstract iii
致謝 v
目錄 i
第一章:緒論 1
1-1 前言 1
1-2 研究內容 4
1-3 本文架構 5
第二章:基礎理論與文獻回顧 6
2-1 反應性磁控濺鍍法(Reactive Magnetron Sputtering) 6
2-1-1 電漿基本原理 6
2-1-2 濺鍍原理 8
2-1-3 磁控濺鍍 13
2-1-4 反應性濺鍍 14
2-2 電漿輔助化學氣相沉積(PECVD) 16
2-2-1 電漿聚合 16
2-2-2 HMDSO碎裂反應(Fragmentation) 18
2-3 氣體阻障層 20
2-3-1 氣體穿透理論 20
2-3-2 多層膜氣體阻障層製備方法回顧 28
2-3-3 減薄單層堆疊多層膜多層氣體阻障層分層回顧 33
第三章:實驗方法與實驗儀器設備 40
3-1 實驗方法 40
3-1-1 實驗流程 40
3-1-2 實驗步驟 41
3-1-3 鍍膜設備 43
3-2 量測與分析設備儀器 46
3-2-1 可見光近紅外光光譜儀 46
3-2-2 表面輪廓測定儀(a-step) 46
3-2-3 原子力顯微鏡(Atomic Force Microscope,AFM) 47
3-2-4 簡易曲率半徑與殘餘應力計算 48
3-2-5 鈣測試法 50
第四章:實驗結果與討論 51
4-1 鈣測試系統與MOCON量測之比較 51
4-2 堆疊膜層WVTR與曲率半徑、殘餘應力之比較 57
4-3 減少單層厚度之比較 62
4-4 改變厚度與HMDSO流量之影響 67
4-5 不同厚度堆疊之比較 71
第五章:結論 75
參考文獻 76
[1] C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, M. Espallargas, ‘‘Flexible high efficiency perovskite solar cells’’, Energy & Environmental Science, Vol 7(3), pp. 994 , 2014
[2] S. Takamatsu, T. Yamashita, T. Murakami, A. Masuda, T. Itoh, ‘‘Fabrication and evaluation of LED-embedded ribbons for highly flexible lighting applications in rooms’’, Microsystem Technologies, Vol 22(5), pp. 1079–1087, 2015.
[3] H. Chatham, ‘‘Review Oxygen diffusion barrier properties of transparent oxide coating on polymeric substrate’’, Surface and Coating Technology, Vol 78(1-3), pp. 1-9, 1996.
[4] J. Lewis, ‘‘Material challenge for flexible organic devices. Materials Today’’, Vol 9(4), pp. 38–45, 2006.
[5] S. M. Lee, J. H. Kwon, S. Kwon, K. C. Choi, ‘‘A Review of Flexible OLEDs Toward Highly Durable Unusual Displays’’, IEEE Transactions on Electron Devices, Vol 64(5), pp. 1922–1931, 2017.
[6] Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan, G. Xu, Z. Popovic, ‘‘Investigation of the sites of dark spots in organic light-emitting devices’’, Applied Physics Letters, Vol 77(17), pp. 2650–2652, 2000.
[7] D. Yu, Y. Q. Yang, Z. Chen, Y. Tao, Y.F. Liu, ‘‘Recent progress on thin-film encapsulation technologies for organic electronic devices’’, Optics Communications, Vol 362, pp. 43–49, 2016.
[8] H. W. Liu, T. H. Chen, C. H. Chang, S. K. Lu, Y. C. Lin, D. S. Liu, ‘‘Impact on the Gas Barrier Property of Silicon Oxide Films Prepared by Tetramethylsilane-Based PECVD Incorporating with Ammonia’’, Applied Sciences, Vol 7(1), pp. 56, 2017.
[9] M. Top, S. Schoenfeld, J. Fahlteich, S. Bunk, T. Kuehnel, S. Straach, J. De Hosson, ‘‘Hollow-cathode activated PECVD for the high-rate deposition of permeation barrier films’’, Surface & Coatings Technology. Vol 314, pp. 155-159, 2017.
[10] T. Maindron, T. Jullien, A. André, ‘‘Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers’’, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 34(3), pp. 031513, 2016.
[11] A. Díez Pascual, A. Díez Vicente, ‘‘Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties’’, International Journal of Molecular Sciences, Vol 15(6), pp. 10950–10973, 2014.
[12] S. Zhang, W. Xue, Z. Yu, ‘‘Moisture barrier evaluation of SiOx/SiNx stacks on polyimide substrates using electrical calcium test’’, Thin Solid Films, Vol 580, pp. 101–105, 2015.
[13] 陳良吉, OLED技術封裝介紹,化工第51卷第2期,2004。
[14] A. M. Andringa, A. Perrotta, K. Knoops, W. M. M. Kessels, M. Creatore, ‘‘Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers’’, ACS Applied Materials & Interfaces, Vol 7(40), pp. 22525–22532, 2015.
[15] T. Y. Lin, C. T. Lee, ‘‘Organosilicon function of gas barrier films purely deposited by inductively coupled plasma chemical vapor deposition system’’, Journal of Alloys and Compounds, Vol 542, pp. 11–16, 2012.
[16] A. Bousquet, V. Bursikova, A. Goullet, A. Djouadi, L. Zajickova, A. Granier, , ‘‘Comparison of structure and mechanical properties of SiO2-like films deposited in O2/HMDSO pulsed and continuous plasmas’’, Surface and Coatings Technology, Vol 200(22-23), pp. 6517–6521, 2006.
[17] M. A. Lieberman, A. J. Lichtenberg, ‘‘Principles of Plasma Discharges and Materials Processing’’, John Wiley & Sons, 1994
[18] M. Konuma, ‘‘Film Deposition by Plasma Techniques’’, Springer-Verlag, 1992
[19] 國科會精密儀器發展中心,真空技術與應用,國科會精密儀器發展中心,第71-79頁,台北,民國九十年。
[20] 國科會精密儀器發展中心,真空技術與應用,國科會精密儀器發展中心,第369-386頁,台北,民國九十年。
[21] I. Safi, ‘‘Recent aspects concerning DC reactive magnetron sputtering of thin films: a review’’, Surface and Coatings Technology, Vol 127(2-3), pp. 203–218, 2000.
[22] P. Kelly, R. Arnell, ‘‘Magnetron sputtering: a review of recent developments and applications’’, Vacuum, Vol 56(3), pp.159–172, 2000.
[23] A.Grill, ‘‘Cold plasma in materials fabrication’’, Wiley-IEEE Press, Vol. 151, New York, 1994.
[24] P. Kelly, R. Arnell, ‘‘Magnetron sputtering: a review of recent developments and applications’’, Vacuum, Vol 56(3), pp.159–172, 2000.
[25] J. Musil, P. Baroch, J. Vlček, K. H. Nam, J. G. Han, ‘‘Reactive magnetron sputtering of thin films: present status and trends’’, Thin Solid Films, Vol 475(1-2), pp. 208–218, 2005.
[26] D. Noguchi, Y. Kawamata, T. Nagatomo, ‘‘Relationship between the Photocatalytic Characteristics and the Oxygen Partial Pressure of TiO2Thin Films Prepared by a DC Reactive Sputtering Method’’, Japanese Journal of Applied Physics, Vol 43(4A), pp. 1581–1585, 2004.
[27] 魏敬倫,以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻雜碳薄膜阻障層之研究,國立中央大學,碩士論文,民國一零一年。
[28] Q. Xie, J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, C. C. Han, ‘‘Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure’’, Advanced Materials, Vol 16(4), pp. 302–305, 2004.
[29] H. Yasuda, T. Hirotsu, ‘‘Critical evaluation of conditions of plasma polymerization’’, Journal of Polymer Science: Polymer Chemistry Edition, Vol 16(4), pp. 743–759, 1978.
[30] C. Oehr, M. Muller, B. D. Hegemann, U. Vohree, Surf. Coat. Technol., 116-110,pp.25-35, (1999).
[31] D. Hegemann, R. Riedel, C. Oehr, ‘‘Influence of single-source precursors on PACVD-derived boron carbonitride thin films’’, Thin Solid Films, Vol 339(1-2), pp. 154–159, 1999.
[32] M. R. Alexander, F. R. Jones, R. D. Short, ‘‘Mass Spectral Investigation of the Radio-Frequency Plasma Deposition of Hexamethyldisiloxane’’, The Journal of Physical Chemistry B, Vol 101(18), pp. 3614–3619, 1997.
[33] M. Goujon, T. Belmonte, G. Henrion, ‘‘OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma’’, Surface and Coatings Technology, Vol 188-189, pp. 756–761, 2004.
[34] Y. G. Tropsha, N. G. Harvey, ‘‘Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terephthalate) Composite Barrier Structures’’, The Journal of Physical Chemistry B, Vol 101(13), pp. 2259–2266, 1997
[35] S. Dushman, ‘‘Diffusion In and Through Solids’’. Journal of Chemical Education, Vol 19(2), pp. 99, 1942.
[36] A. S. Da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg Sapieha, M. R. Wertheimer, ‘‘Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition’’, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 16(6), pp. 3190–3198, 1998.
[37] W. Prins, J. J. Hermans, ‘‘Theory of Permeation through Metal Coated Polymer Films’’, The Journal of Physical Chemistry, Vol 63(5), pp. 716–720, 1959.
[38] B.M. Henry, A.G. Erlat, A. McGuigan, C.R.M. Grovenor, G.A.D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi and T. Nishijima, Thin Solid Films, Vol 382, pp. 194, 2001.
[39] J. Crank, In the mathematics of diffusion, 2nd edition, Clarendon Press, Oxford, (1975)
[40] A. Fick, ‘‘Ueber Diffusion’’, Annalen Der Physik Und Chemie, Vol 170(1), pp. 59–86, 1855.
[41] H. Daynes, Proc. Roy. Soc., (London)97A, pp.286, 1920.
[42] G. L. Graff, R. E. Williford, P. E. Burrows, ‘‘Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation’’, Journal of Applied Physics, Vol 96(4), pp. 1840–1849, 2004.
[43] G. L. Graff, R. E. Williford, P. E. Praino, ‘‘in Flexible Flat Panel Display’’, edited by G. L. Graff, John Wiley&Sons Ltd., Chichester, 2005.
[44] 魏敬倫,以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻雜碳薄膜阻障層之研究,國立中央大學,碩士論文,民國一零一年。
[45] M. Schaepkens, T. W. Kim, A. Gün Erlat, M. Yan, K. W. Flanagan, C. M. Heller, P. A. McConnelee, ‘‘Ultrahigh barrier coating deposition on polycarbonate substrates’’, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 22(4), pp. 1716–1722, 2004.
[46] R. Sprengard, K. Bonrad, T. K. Daeubler, T. Frank, V. Hagemann, I. Koehler, B. Vingerling, ‘‘OLED devices for signage applications: a review of recent advances and remaining challenges’’, Organic Light-Emitting Materials and Devices VIII, 2004.
[47] C.Y. Wu, R. M. Liao, L. W. Lai, M. S. Jeng, D. S. Liu, ‘‘Organosilicon/silicon oxide gas barrier structure encapsulated flexible plastic substrate by using plasma-enhanced chemical vapor deposition’’, Surface and Coatings Technology, Vol 206(22), pp.4685–4691, 2012.
[48] C. Charton, N. Schiller, M. Fahland, A. Holländer, A. Wedel, K. Noller, ‘‘Development of high barrier films on flexible polymer substrates’’, Thin Solid Films, Vol 502(1-2), pp. 99–103, 2006.
[49] T. Hanada, T. Negishi, I. Shiroishi, T. Shiro, ‘‘Plastic substrate with gas barrier layer and transparent conductive oxide thin film for flexible displays’’, Thin Solid Films, Vol 518(11), pp. 3089–3092, 2010.
[50] J. H. Choi, Y. M. Kim, Y. W. Park, T. H. Park, J. W. Jeong, H. J. Choi, B. K. Ju ‘‘Highly conformal SiO2/Al2O3nanolaminate gas-diffusion barriers for large-area flexible electronics applications’’, Nanotechnology, Vol 21(47), pp. 475203, 2010.
[51] S. K. Lu, S. C. Chen, T. H. Chen, L. W. Lai, R. M. Liao, D. S. Liu, ‘‘Barrier property and mechanical flexibility of stress controlled organosilicon/silicon oxide coatings on plastic substrates’’, Surface and Coatings Technology, Vol 280, pp. 92–99, 2015.
[52] M. Top, S. Schönfeld, J. Fahlteich, S. Bunk, T. Kühnel, S. Straach, J. T. De Hosson, ‘‘Hollow-cathode activated PECVD for the high-rate deposition of permeation barrier films’’, Surface and Coatings Technology, Vol 314, pp. 155–159, 2017.
[53] M. Jaritz, C. Hopmann, H. Behm, D. Kirchheim, S. Wilski, D. Grochla, R. Dahlmann, ‘‘Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene’’, Journal of Physics D: Applied Physics, Vol 50(44), pp. 445301, 2017.
[54] M. Top, J. Fahlteich, J. T. M. De Hosson, ‘‘Influence of the applied power on the barrier performance of silicon-containing plasma polymer coatings using a hollow cathode-activated PECVD process’’, Plasma Processes and Polymers, Vol 14(9), pp. 1700016, 2017.
[55] T. Y. Lin, C. T. Lee, ‘‘Organosilicon function of gas barrier films purely deposited by inductively coupled plasma chemical vapor deposition system’’, Journal of Alloys and Compounds, Vol 542, pp. 11–16, 2012.
[56] L. Qi, C. Zhang, Q. Chen, ‘‘Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells’’ Plasma Science and Technology, Vol 16(1), pp. 45–49, 2014.
[57] H. Nakayama, M. Ito, ‘‘Super H2O-barrier film using Cat-CVD (HWCVD)-grown SiCN for film-based electronics’’, Thin Solid Films, Vol 519(14), pp. 4483–4486, 2011.
[58] T. Hirvikorpi, M. Vähä-Nissi, J. Nikkola, A. Harlin, M. Karppinen, ‘‘Thin Al2O3 barrier coatings onto temperature-sensitive packaging materials by atomic layer deposition’’, Surface and Coatings Technology, Vol 205(21-22), pp. 5088–5092, 2011.
[59] J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, ‘‘The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition’’, Applied Physics Letters, Vol 96(24), pp. 243308, 2010.
[60] P. F. Carcia, R. S. McLean, M. H. Reilly, ‘‘Permeation measurements and modeling of highly defective Al2O3 thin films grown by atomic layer deposition on polymers’’, Applied Physics Letters, Vol 97(22), pp. 221901, 2010.
[61] C. Y. Wu, R. M. Liao, L. W. Lai, M. S. Jeng, D. S. Liu, ‘‘Organosilicon/silicon oxide gas barrier structure encapsulated flexible plastic substrate by using plasma-enhanced chemical vapor deposition’’, Surface and Coatings Technology, Vol 206(22), pp. 4685–4691, 2012.
[62] D. S. Han, D. K. Choi, J. W. Park, ‘‘Al2O3/TiO2 multilayer thin films grown by plasma enhanced atomic layer deposition for organic light-emitting diode passivation’’, Thin Solid Films, Vol 552, pp. 155–158, 2014.
[63] M. Park, S. Oh, H. Kim, D. Jung, D. Choi, J.S. Park, ‘‘ Gas diffusion barrier characteristics of Al2O3/alucone films formed using trimethylaluminum, water and ethylene glycol for organic light emitting diode encapsulation’’, Thin Solid Films, Vol 546, pp. 153–156, 2013.
[64] Z. Shil, J. J. Zhang, M. M. Deng, F. Li, ‘‘Multilayer nano-thin-film encapsulation for flexible and printable electronics’’, Nanomanufacturing, 2014.
[65] T. Bülow, H. Gargouri, M. Siebert, R. Rudolph, H.-H. Johannes, W. Kowalsky, ‘‘ Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor’’, Nanoscale Research Letters, Vol 9(1), pp.223, 2014.
[66] R. Charifou, E. Espuche, F. Gouanvé, L. Dubost, B. Monaco, ‘‘SiOx and SiOxCzHw mono- and multi-layer deposits for improved polymer oxygen and water vapor barrier properties’’, Journal of Membrane Science, Vol 500, pp. 245–254, 2016.
[67] J. H. Zhang, Y. S. Wang, J. H. Liang, D. S. Wuu, ‘‘Effect of the polymer overcoat on the performance of the SiNx/SiOx multilayer barrier for OLED gas barrier applications’’, International Symposium on Next-Generation Electronics (ISNE), 2015.
[68] S. W. Seo, E. Jung, H. Chae, S. J. Seo, H. K. Chung, S. M. Cho, ‘‘Bending properties of organic–inorganic multilayer moisture barriers’’, Thin Solid Films, Vol 550, pp. 742–746, 2014.
[69] S. H. Lim, S. W. Seo, E. Jung, H. Chae, S. M. Cho, ‘‘ Enhanced moisture-barrier property and flexibility of zirconium oxide/polymer hybrid structures’’, Korean Journal of Chemical Engineering, Vol 33(3), pp. 1070–1074, 2016.
[70] S. H. Yong, H. J. Ahn, S. J. Kim, J. S. Park, S. Kwon, S. M. Cho, ‘‘ Room Temperature Deposition of SiNx and Plasma Polymer Layers for Flexible Multilayer Barrier Films by Plasma Enhanced Chemical Vapor Deposition Processes’’, Nano, Vol 13(07), 2018.
[71] J. S. Park, S. H. Yong, Y. J. Choi, H. Chae, ‘‘Residual stress analysis and control of multilayer flexible moisture barrier films with SiNx and Al2O3 layers’’, AIP Advances, Vol 8(8), pp. 085101, 2018.
[72] S. H. Yong, S. J. Kim, J. S. Park, S. M. Cho, H. J. Ahn, H. Chae, ‘‘Flexible Carbon-rich Al2O3 Interlayers for Moisture Barrier Films by a Spatially-Resolved Atomic Layer Deposition Process’’, Journal of the Korean Physical Society, Vol 73(1), pp. 40–44, 2018.
[73] ‘‘http://www.speciation.net/Database/Instruments/Hitachi--Science-amp-Technology/U4100-UVVisNIR-Spectrophotometer-;i108’’
[74] ‘‘https://www.keyence.com.tw/ss/products/microscope/roughness/equipment/surface_01.jsp’’
[75] ‘‘http://web1.knvs.tp.edu.tw/AFM/ch4.htm’’
[76] ‘‘https://market.cloud.edu.tw/content/vocation/mechanical/tp_st/top1/chap18/html/chap18-31.htm’’
[77] G. G. Stoney, ‘‘The Tension of Metallic Films Deposited by Electrolysis. Proceedings of the Royal Society A: Mathematical’’, Physical and Engineering Sciences, Vol 82(553), pp. 172–175, 1909.
[78] 郭倩丞,高密度分波多工器(DWDM)濾光片的應力與溫飄特性研究,國立中央大學,博士論文,民國九十六年。
[79] S. Schubert, H. Klumbies, L. Müller Meskamp, K. Leo, ‘‘Electrical calcium test for moisture barrier evaluation for organic devices’’, Review of Scientific Instruments, Vol 82(9), pp. 094101, 2011.
[80] M. O. Reese, A. A. Dameron, M. D. Kempe, , ‘‘Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement’’, Review of Scientific Instruments, Vol 82(8), pp. 085101, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top