跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳泰霖
研究生(外文):Tai-Lin Chen
論文名稱:選擇性磊晶成長砷化銦鎵與砷化銦鋁於奈米圖案化鍺模板
論文名稱(外文):Selective Area Epitaxy of InGaAs and AlInAs on Nano-Patterned Ge Templates
指導教授:綦振瀛
指導教授(外文):Jen-Inn Chyi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:砷化銦鎵選擇性磊晶
外文關鍵詞:InGaAsGeSelective Area Epitaxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
互補式金氧半(CMOS)積體電路遵循著摩爾定律(Moore Law)持續微縮電晶體尺寸,在過去數十年的進步已微縮至七奈米技術節點,如何在一定的成本之下,持續提升積體電路的特性並降低其功耗一直是微電子界眾人所關心的議題。目前國際上提出了兩個大方向來尋求突破,一是使用創新的元件結構,另其則是導入新穎的通道材料。在眾多的新材料中,鍺的電洞遷移率較矽為高,被認為最適合取代矽來作為P型通道材料,而具有高電子遷移率的III-V族化合物半導體則可被應用在N型通道電晶體中。為此,將此二種異質材料整合在十二吋矽晶圓上是達成量產規模之選項之一,也成為國際各界積極研發之關鍵技術。
本研究採取的異質整合策略是以有機金屬化學蒸氣沉積法選擇性磊晶成長III-V族化合物半導體,即砷化銦鎵和砷化銦鋁,於具有奈米圖案之鍺模板上。此鍺模板上的鍺薄膜是以化學蒸氣沉積法磊晶於(100)的矽基板上。本論文研究探討模板圖案蝕刻形貌以及基板溫度、V/III族氣體流量比、磊晶速度等成長條件對磊晶形貌與材料品質之影響,並選擇適當磊晶參數成功整合砷化铟鎵與鍺之鰭狀奈米線(80 nm)於矽基板上。
Complementary Metal-Oxide-Semiconductor integrated circuit follow Moore's Law by decreasing transistor size consistently. With progress in the past few decades,it reach 7nm technology node. How to improve the performace and reduce its power consumption under certain cost has always be a topic in the industry. At present, two major approaches have been proposed to seek breakthroughs internationally. One is to use innovative component structures, and the other is to introduce novel channel materials. Among the proposed materials, high hole mobility Ge and high electron mobility InGaAs has been considered to be the most promising channel materials for p-channel and n-channel MOSFETs, respectively. Therefore,one of the options is the integration of two heterogeneous materials on the 12-inch silicon wafer,and the technique can be the most critical method that industry highly keen to do more research and wider development.
The heterogeneous integration strategy in the study is to selective area epitaxy of InGaAs and AlInAs on nano-patterned Ge templates by metal-organic chemical vapor deposition (MOCVD). Ge film is epitaxially on a (100) silicon substrate by chemical vapor deposition. This dissertation aims to investigate the effect of different Ge templates profile and epitaxy growth parameter like growth temperature, V/III ratio and growth rate to epitaxy layer quality and morphology, and choose appropriate epitaxy parameter to integrate the InGaAs and Ge fin nanowire on the Si substrate successfully.
摘要 i
Abstract i
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 材料選擇 2
1.2.2 異質整合技術之文獻回顧 4
1.3 論文架構 7
第二章 選擇性成長三五族材料條件之探討 8
2.1 簡介 8
2.2 試片製備與實驗步驟 10
2.3 選擇性成長砷化銦鋁 14
2.3.1 溫度與五三比之影響 14
2.3.2 成長速率及鋁含量之影響 18
2.4 選擇性成長砷化銦鎵 20
2.4.1 銦含量之影響 20
2.4.2 溫度之影響 22
2.5 佈局設計對於選擇性磊晶之影響 24
2.6 本章總結 26

第三章 選擇性異質結構之成長 27
3.1 前言 27
3.2 砷化銦鎵/砷化銦鋁異質結構磊晶成長 28
3.3 砷化銦鎵/砷化銦鋁異質結構材料特性分析 32
3.4 本章總結 37
第四章 總結 38
參考文獻 39
[1] M. Levinshtein, S.Rumyantsev and M. Shur, ”Handbook Series on Semiconductor Parameters”, World Scientifi c, Singapore, 1996.
[2] N. Waldron, C. Merckling, W. Guo, P. Ong, L. Teugels, S. Ansar, D. Tsvetanova, F. Sebaai, D.H. van Dorp, A Milenin, D. Lin, L. Nyns, J. Mitard, A Pourghaderi, B. Douhard, O. Richard, H. Bender, G. Boccardi, M. Caymax, M. Heyns, W. Vandervorst, K. Barla, N. Collaert and A. Thean, "An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, 2014.
[3] M. L. Huang, S. W. Chang, M. K. Chen, C. H. Fan, H. T. Lin, C. H. Lin, R. L. Chu, K. Y. Lee, M. A. Khaderbad, Z. C. Chen, C. H. Lin, C. H. Chen, L. T. Lin, H. J. Lin, H. C. Chang, C. L. Yang, Y. K. Leung, Y.-C. Yeo, S. M. Jang, H. Y. Hwang and Carlos H. Diaz, ”In0.53Ga0.47As MOSFETs with high channel mobility and gate stack quality fabricated on 300 mm Si substrate”, Symposium on VLSI Technology Digest of Technical Paper, 2015.
[4] V.K. Yang, M. Groenert, C.W. Leitz, A.J. Pitera, M.T. Currie and E.A. Fitzgerald, ”Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys, 2003.
[5] M. Yamaguchi, T. Nishioka and M. Sugo, ”Analysis of strained layer superlattice effects on dislocation density reduction in GaAs on Si substrates”, Appl. Phys. Lett, 1989.
[6] L. Czornomaz, N. Daix, K. Cheng, D. Caimi1, C. Rossel, K. Lister, M Sousa and J. Fompeyrine, ”Co-integration of InGaAs n- and SiGe p-MOSFETs into digital CMOS circuits using hybrid dual-channel ETXOI substrates”, IEDM, 2013.
[7] N. Waldron, C. Merckling, L. Teugels, P. Ong, F. Sebaai, K. Barla, N. Collaert and A. Thean, ”Replacement fin processing for III–V on Si: From FinFets to nanowires”, Solid-State Electronics, 2016.
[8] J. G. Fiorenza, J.-S. Park, J. M. Hydrick, J.Li, J. Z. Li, M. Curtin, M. Carroll and A. Lochtefeld, ”Aspect Ratio Trapping: a Unique Technology for Integrating Ge and III-Vs with Silicon CMOS”, ECS Transactions, 2010.
[9] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni and J. Fompeyrine, ”Confined Epitaxial Lateral Overgrowth (CELO): A Novel Concept for Scalable Integration of CMOS-compatible InGaAs-on-insulator MOSFETs on Large-Area Si Substrates”, Symposium on VLSI Technology Digest of Technical Papers, 2015.
[10] S. H. Jones, L. K. Seidel, K. M. Lau and M. Harold, ”Patterned substrate epitaxy surface shapes”, J. Cryst Growth, 1991.
[11] B. Kunert, W. Guo, Y. Mols, R. Langer and K. Barla, ”Integration of III/V Hetero-Structures by Selective Area Growth on Si for Nano- and Optoelectronics”, ECS Transactions, 2016.
[12] Y. Kawaguchi, S. Nambu, H. Sone, M. Yamaguchi, H. Miyake, K. Hiramatsu, N. Sawaki, Y. Iyechika and T. Maeda, ”Sective area growth (SAG) and epitaxial lateral overgrowth (ELO) of GaN using Tungsten mask”, Mat. Res. Soc. Symp. Proc, 1998.
[13] C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns and W. Vandervorst, ” Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50nm width trenches: The role of the nucleation layer and the recess engineering”, J. Appl. Phys, 2014.
[14] J. Faucher, T. Masuda and M.L. Lee, ”Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge”, J. Vac. Sci. Technol. B Nanotechnol. Microelectr, 2016.
[15] M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster,
W. Vandervorst, M. Caymax and M. Heyns, ”Site selective integration of III–V materials on Si for nanoscale logic and photonic devices”, Cryst. Growth Des, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊