(3.227.235.183) 您好!臺灣時間:2021/04/13 20:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭仁澤
研究生(外文):Jen-Che Hsiao
論文名稱:金屬氧化物熱電材料之製程開發及模組研究
論文名稱(外文):Process Innovation and Module Development of Metal Oxide Thermoelectric Materials
指導教授:辛正倫
指導教授(外文):Cheng-Lun Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:熱電材料氧化銦模組熱電優質
外文關鍵詞:Thermoelectric materialsIndium oxideModuleZT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱電材料廣泛的用途,及其綠色能源永續發展的特性,逐漸成為目前主流趨勢。隨著技術發展成熟,熱電發電機轉換效率也在提升,如鋼鐵、水泥等製造業,也以廢熱進行發電。
氧化物半導體的熱穩定性及化學穩定性,使其成為適合的熱電材料,且研究指出奈米結構的特性可以降低熱導,進而提高ZT值。
本論文研究對象為N型半導體材料,主要使用材料為氧化銦,再透過添加二氧化鈰、鋅以及二氧化矽等,量測其作為熱電元件的可能性。我們發現以4at%比例的二氧化鈰添加至氧化銦,其熱電特性較為優秀,也較為穩定。選定較佳的材料後,開始模組的製作,並量測其發電功率。雖然本實驗成功製做出模組,但其功率及結構性並不如預期,整體結構不夠穩固,且整體電阻值過高,導致發電功率較低,希望能以此實驗為基石,在往後能尋找更合適之方法來改善目前問題,以研發出高轉換效率之熱電模組。
Thermoelectric (TE) materials are promising candidates for many applications, including thermopiles, thermal sensors, and TE cooler for laser diodes. The performance of a TE device is characterized by the figure of merit (ZT). Oxide semiconductors are regarded as the potential candidates for high-temperature TE applications due to thermal and chemical stability in ambient condition at high temperature. Theoretical calculations and experimental results suggest that ZT can be enhanced in nanostructured materials. It has been reported that In_2 O_3-based ceramics are with high power factors, and the ZT value of In_2 O_3-based ceramics can be effectively improved by reducing the thermal conductivity.
In this work, the TE properties of In_2 O_3 doped with Zn and CeO_2 have been investigated. The powders composition were designed as In_1.92 Ce_0.08 O_3 and In1.96Zn0.04O3. These thermoelectric materials were employed to fabricate a thermoelectric module for power generation.
In the future work, an enhanced ZT value and contact material are needed for high-temperature TE modules.
目錄
摘要....................................................I
Abstract...............................................II
誌謝..................................................III
目錄...................................................IV
圖目錄.................................................VI
第一章 緒論..............................................1
1-1 前言............................................1
1-2 熱電歷史.........................................2
1-3 熱電材料未來開發與趨勢............................2
1-4 研究動機.........................................3
第二章 基礎理論..........................................4
2-1 熱電效應.........................................4
2-2 熱電轉換效率及熱電優質............................6
2-3 氧化銦之添加.....................................8
2-4 冷壓法..........................................8
2-5 高溫燒結.........................................8
第三章 實驗流程與儀器設備................................10
3-1 實驗流程........................................10
3-2 實驗方法........................................11
3-3 實驗量測介紹....................................17
3-4 實驗儀器介紹....................................22
第四章 實驗結果分析與討論................................24
4-1 前言...........................................24
4-2 CeO2、Zn、In2O3製程參數與塊材量測................24
4-3 SiO2、CeO2、Zn、In2O3製程參數與塊材量測..........25
4-4 熱電特性比較....................................26
4-5 高溫熱電特性比較................................33
4-6 SEM圖..........................................36
4-7 XRD圖..........................................39
4-8 模組量測........................................41
4-9 模組討論........................................45
4-10 結論與未來展望.................................46
參考文獻................................................47
[1]巫振榮, "熱電元件應用." 國家奈米元件實驗室/蝕刻薄膜組.

[2]"<出自於:https://www.tusa.org.tw/chi/result/success_stories_view.aspx?id=BRHMdfkt%2BeM%3D&fbclid=IwAR2DMshrNZvt1181Gzd_DujUGLuVgUTGC_NI7E1UrbAV3kyaT1fwCPLNfRs>."

[3]G. Korotcenkov, V. Brinzari, and M.-H. Ham, "In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion," Crystals, vol. 8, no. 1, 2018, doi: 10.3390/cryst8010014.

[4]M. G. Kanatzidis, "Nanostructured Thermoelectrics: The New Paradigm?†," Chemistry of Materials, vol. 22, no. 3, pp. 648-659, 2010, doi: 10.1021/cm902195j.

[5]Y. Liu et al., "High-Temperature Transport Property of In2−xCexO3 (0 ≤ x ≤ 0.10) Fine Grained Ceramics," Journal of the American Ceramic Society, vol. 95, no. 8, pp. 2568-2572, 2012, doi: 10.1111/j.1551-2916.2012.05206.x.

[6]J. Lan, Y.-H. Lin, Y. Liu, S. Xu, C.-W. Nan, and M. Hopper, "High Thermoelectric Performance of Nanostructured In2O3-Based Ceramics," Journal of the American Ceramic Society, vol. 95, no. 8, pp. 2465-2469, 2012, doi: 10.1111/j.1551-2916.2012.05284.x.

[7]K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, "Oxide Thermoelectric Materials: A Nanostructuring Approach," Annual Review of Materials Research, vol. 40, no. 1, pp. 363-394, 2010, doi: 10.1146/annurev-matsci-070909-104521.

[8]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, "Bulk nanostructured thermoelectric materials: current research and future prospects," Energy & Environmental Science, vol. 2, no. 5, 2009, doi: 10.1039/b822664b.

[9]L. E. Bell, "," Science, 2008.

[10]"<出自於:https://www.fzu.cz/~knizek/pdf/Thermopower.pdf>."

[11]Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling," Semiconductor Science and Technology, vol. 20, no. 12, pp. R57-R64, 2005, doi: 10.1088/0268-1242/20/12/r01.

[12]A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling," Infosearch, 1957.

[13]D. S. Kim and C. A. Infante Ferreira, "Solar refrigeration options – a state-of-the-art review," International Journal of Refrigeration, vol. 31, no. 1, pp. 3-15, 2008, doi: 10.1016/j.ijrefrig.2007.07.011.

[14]K. Koumoto et al., "Thermoelectric Ceramics for Energy Harvesting," Journal of the American Ceramic Society, vol. 96, no. 1, pp. 1-23, 2013, doi: 10.1111/jace.12076.

[15]M. V. S. a. G. D. Mahan, "," PHYSICAL REVIEW LETTERS.

[16]C. Y. Liu, "Development of bismuth telluride alloy thin film thermoelectric devices," 2015. National Taiwan University.

[17]G. Ren et al., "High Performance Oxides-Based Thermoelectric Materials," Jom, vol. 67, no. 1, pp. 211-221, 2014, doi: 10.1007/s11837-014-1218-2.

[18]E. Guilmeau et al., "Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site," Journal of Applied Physics, vol. 106, no. 5, 2009, doi: 10.1063/1.3197064.

[19]H. O. W. S. S. K. Koumoto, "Thermoelectric Properties of Homologous Compounds in the ZnO–In2O3 System," The American Ceramic Society, 1996.

[20]M. Amani, I. M. Tougas, O. J. Gregory, and G. C. Fralick, "High-Temperature Thermoelectric Properties of Compounds in the System Zn x In y O x+1.5y," Journal of Electronic Materials, vol. 42, no. 1, pp. 114-120, 2012, doi: 10.1007/s11664-012-2300-6.

[21]F. Yu, et al., "Enhanced thermoelectric figure of merit in nano crystalline Bi2Te3 bulk," Journal of Applied Physics, 2009.

[22]M. N. Rahaman, "Ceramic Processing and Sintering," CRC Press 2003.

[23]駱榮富教授, "<出自於:http://www.mse.fcu.edu.tw/wSite/public/Attachment/f1348051467573.pdf>."

[24]E. G. D. Be ́rardan, A. Maignan, and B. Raveau, "Enhancementof the Thermoelectric Performances of In2O3by the Coupled Substitution ofMn2+/Sn4+for In3+," J. Appl. Phys, 2008.

[25]D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, ":Ge, a promising n-type thermoelectric oxide composite," Solid State Communications, vol. 146, no. 1-2, pp. 97-101, 2008, doi: 10.1016/j.ssc.2007.12.033.

[26]K. Park et al., "Improved thermoelectric properties by adding Al for Zn in (ZnO)mIn2O3," Materials Letters, vol. 61, no. 25, pp. 4759-4762, 2007, doi: 10.1016/j.matlet.2007.03.021.

[27] Z. A. H. Von Kasper, Allg. Chem., "," 1967.

[28]P.J.CannardR.J.D.Tilley, "," Solid state chemistry, 1988.

[29]Y. Zhang et al., "High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery," Energy Conversion and Management, vol. 105, pp. 946-950, 2015, doi: 10.1016/j.enconman.2015.08.051.

[30]T. Nakamura et al., "Power-Generation Performance of a π-Structured Thermoelectric Module Containing Mg2Si and MnSi1.73," Journal of Electronic Materials, vol. 44, no. 10, pp. 3592-3597, 2015, doi: 10.1007/s11664-015-3910-6.

[31]D. K. Schroder, " Semiconductor material and device characterization," John Wiley & Sons, 2006.

[32]維基百科, "https://zh.wikipedia.org/wiki/%E9%98%BF%E5%9F%BA%E7%B1%B3%E5%BE%B7%E6%B5%AE%E9%AB%94%E5%8E%9F%E7%90%86."

[33]Y. Tada, M. Harada, M. Tanigaki, and W. Eguchi, "Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids," Rev Sci Instrum, vol. 49, no. 9, p. 1305, Sep 1978, doi: 10.1063/1.1135573.

[34]G. H. Erno Pungor, "A Practical Guide to Instrumental Analysis," CRC Press, 1994.

[35]維基百科, "<出自於:https://en.wikipedia.org/wiki/Thermal_conductivity>."

[36]維基百科, "<出自於:https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C>."

[37]"<出自於:http://www2.nkfust.edu.tw/~johnfu/mold%20teaching%20materials/7%20transparent%20film.pdf>."

[38]維基百科, "<出自於:https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9%93%9F%E9%94%A1>."

[39]"<出自於:https://read01.com/zh-tw/xA0z08.html?fbclid=IwAR3TXU1XMMUXhLa5vy9lXTmcjywYbUq8_n28BeD3HNTWHiv_ReVnCq7V6gA#.XQsn0BYzaUl>," 2015. 第一LED網.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔