(18.206.177.17) 您好!臺灣時間:2021/04/23 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:温登翔
研究生(外文):Teng-Hsiang Wen
論文名稱:以嵌入式平台為基礎開發聽覺腦幹響應量測系統
論文名稱(外文):Development of an Embedded-Platform-Based Auditory Brainstem Response (ABR) Measurement System
指導教授:吳炤民
指導教授(外文):Chao-Min Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:聽覺腦幹響應神經診斷聽力閾值NI myRIO-1900LabVIEWData Dashboard for LabVIEW平均加算移動平均再現性曼-惠特尼檢定
外文關鍵詞:Auditory Brainstem Response (ABR)Neurological diagnosisHearing thresholdNI myRIO-1900LabVIEWData Dashboard for LabVIEWSignal averagingMoving averageReproducibilityMann-Whitney U test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新生兒聽力篩檢於幼兒後天的發展占重要地位,三歲內為幼兒語言學習黃金時期,聽力損傷越早被診斷出,就能盡早進行聽力相關手術、聽力以及構音訓練,降低聽力損傷對於幼兒造成日後負面影響。至今,全球各個國家針對全年齡層或是新生兒童的聽力能力相關的檢測已經發展成熟,並且種類多樣化,本研究以多種檢測工具中的其中一種名為聽覺腦幹響應的儀器做設計基礎。
本研究以NI myRIO-1900嵌入式開發板為設計平台,搭配LabVIEW圖形化程式作為開發軟體設計電腦版使用者人機介面以及 Data Dashboard for LabVIEW App程式作為平版或是智慧型裝置顯示介面,不僅可以在電腦端顯示結果,也可以透過App在平板或是手機顯示量測結果。
為了評估此系統之可行性,本研究對5名男性與1名女性 (年齡:23至42歲;4男1女聽力正常,聽力閾值< 25 dB HL,250 Hz–8000 Hz;1男極重度聽損,聽力閾值=115 dB HL,500 Hz–4000 Hz)進行在不同刺激音強度下聽覺腦幹響應檢測 (threshold ABR, tABR) (實驗一),5位聽力正常個案測量結果ABR聽力閾值均在30 dB SPL以下,而1名極重度聽損個案測量結果ABR聽力閾值為80 dB SPL以上,與純音聽力閾值檢測結果相符合,實驗一的檢測結果顯示此系統對聽力正常以及極重度個案量測的可行性;實驗一中的兩位正常聽力個案 (1男1女)分別使用本系統以80 dB SPL為刺激音大小的神經診斷聽覺腦幹響應 (neural ABR, nABR)以及tABR功能做量測,並與臨床儀器檢測結果進行曼-惠特尼U檢定 (實驗二)。實驗結果nABR部分,個案測量數據與臨床儀器檢測結果均無顯著差異 (男性:左耳:U = 14 > Uα = 5;右耳:U = 15 > Uα = 5;女性:左耳:U = 17 > Uα = 5;右耳:U = 15 > Uα = 5),而tABR部分,個案測量數據與臨床儀器檢測結果均無顯著差異 (男性:左耳:U = 12 > Uα = 5;右耳:U = 17 > Uα = 5;女性:左耳:U = 11 > Uα = 5;右耳:U = 12.5 > Uα = 5),以上實驗結果顯示本研究開發之聽覺腦幹響應量測系統nABR以及tABR功能的可行性。
Newborn hearing screening plays an important role in the development of children. The golden age of children’s language learning is within three years old. The earlier the hearing impairment is diagnosed, the hearing-related surgery, hearing and articulation training can be performed as early as possible, to reduce the negative influences for the development of these children in the future. So far, the related tools of hearing test for all ages or newborn children in various countries around the world has matured and diversified. This research is designed with and based on one of the hearing test tools named the auditory brainstem response instrument.
This study uses the NI myRIO-1900 embedded development board as the design platform, which uses the LabVIEW graphical program as the development software to design computer user human machine interface, and uses an App called Data Dashboard for LabVIEW to display the test results on iPads, Android devices and other smart devices. The results can be displayed not only on the computer side, but also on the tablet or mobile phone through the App.
In order to assess the feasibility of this system, five male subjects and one female subject (Age: 23-42; 4 male and 1 female normal hearing subjects: Hearing threshold < 25 dB HL, 250 Hz-8000 Hz; 1 male profound hearing impairment subject: Hearing threshold = 115 dB HL, 500 Hz-4000 Hz) participated threshold ABR testing (tABR) of our research (The first experiment). The tABR results of five normal hearing subjects were measured all below 30 dB SPL, while the tABR results of the profound hearing loss subject was measured above 80 dB SPL, consistent with the hearing threshold results by the pure tone audiometry. The experimental results of the two cases verify the feasibility of this system for normal hearing and profound hearing impairment subjects. Two of the normal hearing subjects of the first experiment (1 male and 1 female) attended the second experiment of this study. This experiment use the neural ABR (nABR) and tABR functions of our system for testing, and the results are compared with the results of a clinical instrument by using Mann-Whitney U test. In the nABR section, the data of the two cases in the nABR are not significantly different from the data of the clinical instrument (male: Left ear: U=14>Uα=5; Right ear: U=15>Uα=5; female: Left ear: U=17>Uα=5; Right ear: U=15>Uα=5). In the tABR section, there is no significant difference between the tABR and the clinical instrument in these two subjects (male: Left ear: U=12>Uα=5; Right ear: U=17>Uα=5; female: Left ear: U=11>Uα=5; Right ear: U=12.5>Uα=5). These results have demonstrated that the feasibility of this system including the nABR and tABR functions.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻回顧 6
1.3.1 醫學領域 6
1.3.2 工程領域 8
1.3.3 臨床觀點 11
1.4 論文架構 15
第二章 聽覺腦幹響應 16
2.1 聽覺腦幹響應 (ABR) 起源與原理 16
2.2 聽覺腦幹響應 (ABR) 主要功能 23
2.3 受測者與ABR波形之關係 25
2.4 ABR基本檢測步驟 26
第三章 ABR量測系統設計 29
3.1 系統架構 29
3.2 韌體 33
3.2.1 脈衝訊號 35
3.3 硬體 38
3.3.1 前級放大電路 39
3.3.2 二階帶通濾波器 40
3.3.3 後級放大電路 43
3.3.4 保護電路 44
3.3.5 完整電路圖 45
3.3.6 聽力檢測專用耳機 45
3.3.7 電極貼片 46
3.4 軟體 47
3.5 演算法 49
3.5.1 平均加算 (Signal Averaging) 49
3.5.2 移動平均 (Moving Averaging) 52
3.5.3 再現性 (Reproducibility) 53
第四章 系統呈現與實驗設計 55
4.1 系統外觀 55
4.2 電腦版軟體介面 55
4.3 平板App結果呈現畫面 59
4.4 電極貼片配置 60
4.5 實驗設計 61
4.5.1 個案 61
4.5.2 實驗一 61
4.5.3 實驗二 62
4.6 系統驗證 64
第五章 實驗結果與討論 65
5.1 實驗一 65
5.1.1 Subject 1 65
5.1.2 Subject 1-5 69
5.1.3 Subject 6 71
5.1.4 實驗一討論 72
5.2 實驗二 73
5.2.1 nABR與臨床儀器比較結果 73
5.2.2 tABR與臨床儀器比較結果 77
5.2.3 實驗二討論 80
5.2.4 醫院量測實照 81
5.3 實驗討論 82
第六章 結論與未來展望 83
6.1 結論 83
參考文獻 86
附錄A 93
附錄B 104
Allison, T., Wood, C. C., & Goff, W. R. (1983). “Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, and brain and body size”, Electroencephalography and Clinical Neurophysiology., vol. 55, pp. 619-636.

Arooj, A., Muhamed, M. R., Salleh, S. H. S., & Omar, M. H. (2010). “Use of instantaneous energy of ABR signals for fast detection of wave V”, Journal of Biomedical Science and Engineering., vol. 2010; 3, pp. 816-821.

Cargnelutti, M., Coser, P. L., & Biaggio, E. P. V. (2016). “Ls ce-chirp vs click in the neuroradiological diagnosis by ABR”, Brazilian Journal of Otorhinolaryngology., vol. 83, pp. 313-317.

Cone, B., & Norrix, L. W. (2015). “Measuring the advantage of kalman-weighted averaging for auditory brainstem response hearing evaluation in infants”, American Journal of Audiology., vol. 24, pp. 153-168.

Costa, P., Benna, P., Bianco, C., Ferrero, P., & Bergamasco, B. (1990). “Aging effects on brainstem auditory evoked potentials”, Electroencephalography and Clinical Neurophysiology., vol. 30, pp. 495-500.

Chalak, S., Kale, A., Deshpande, K. V., & Biswas, A. D. (2013). “Establishment of normative data for Monaural Recordings of Auditory Brainstem Response and its Application in Screening Patients with Hearing Loss: A Cohort Study”, Journal of Clinical and Diagnostic Research., vol. 7, pp. 2677-2679.

Debruyne, F. (1986). “Influence of age and hearing loss on the latency shifts of the auditory brainstem response as a result of increased stimulus rate”, Audiology., vol. 25, pp. 101-106.

Don, M., Allen, A. R., & Starr, A. (1977). “Effect of click rate on the latency of auditory brain stem responses in humans”, The Annals of Otology, Rhinology and Laryngology., vol. 86, pp. 186-195.
Dzulkarnian, A. A. A. B, Hadi, U. S. A. H., & Zakaria, N. A. (2013). “The effects of stimulus rate and electrode montage on the auditory brainstem response in infants”, Speech, Language and Hearing., vol. 16, pp. 221-226.

Delgado, R. E., and Özdamar, Ö. (1994). “Automated Auditory Brainstem Response Interpretation”, IEEE Eng. Med. Biol., vol. 13, pp. 227-237.

Delgado, R. E., and Özdamar, Ö. (2004). “Deconvolution of evoked responses obtained at high stimulus rates”, J. Acoust. Soc. Am., vol. 115, pp. 1242-1251.

Elberling, C., & Don, M. (1984). “Quality estimation of averaged auditory brainstem responses”, Scand Audiol., vol. 13, pp. 187-197.

Elberling, C., & Don, M. (2008). “Auditory brainstem responses to a chirp stimulus designed from derived-band latencies in normal-hearing subjects”, The Journal of the Acoustical Society of America., vol. 124, pp. 3022-3037.

Galambos, R., Makeig, S., & Talmachoff, R. J. (1981). “A 40-hz auditory potential recorded from the human scalp”, Proceedings of the National Academy of Sciences of the United States of America., vol. 78, pp. 2643-2647.

Georgiadis, S. D., Ranta-aho, P. O., Tarvainen, M. P., & Karjalainen, P. A. (2005). “Single-trial dynamical estimation of event-related potentials: a kalman filter-based approach”, IEEE Transactions on Biomedical Engineering., vol. 52, pp. 1397-1406.

Georgiadis, S. D., Ranta-aho, P. O., Tarvainen, M. P., & Karjalainen, P. A. (2006). “A Subspace Method for Dynamical Estimation of Evoked Potentials”, Computational Intelligence and Neuroscience., vol. 2007, pp. 1-11.

Glattke, T. J. (1983). “Short-latency auditory evoked potential: Fundamental bases and clinical applications”, Baltimore: University Park Press.

Golub, G., & Kahan, W. (1965). “Calculating the singular values and pseudo-inverse of a matrix”, Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis., vol. 2, pp. 205-224.

Gorga, M. P., Kaminski, J. R., Beauchaine, K. A., & Jesteadt, W. (1988). “Auditory brainstem responses to tone bursts in normally hearing subjects”, Journal of Speech and Hearing Research., vol. 31, pp. 87-97.

Hall, J. W. III. (1992). “Handbook of auditory evoked Responses”, Boston: Allyn and Bacon., The United States of America.

Hotelling, H. (1931). “The generalization of student’s ratio”, The Annals of Mathematical Statistics., vol. 2, pp. 360-378.

Hyde, M. L., Stephens, S. D. G., & Thornton, A. R. D. (1976). “Stimulus repetition rate and the early brainstem responses”, British Journal of Audiology., vol. 10, pp. 41-46.

Issa, A., & Ross, F. H. (1995). “An improved procedure for assessing ABR latency in young subjects based on a new normative data set”, International Journal of Pediatric Otorhinolaryngology., vol. 32, pp. 35-47.

Jacobson, J. T., Morehouse, C. R., & Johnson, M. (1982). “Strategies for infant auditory brain stem response assessment”, Ear and Hearing., vol. 3, pp. 263-270.

Jerger, J., & Hall, J. W. III. (1980). “Effects of age sex on auditory brainstem response”, Archives of otolaryngology., vol. 106, pp. 387-391.

Jewett, D. L. (1970). “Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat”, Electroenceph. clin. Neurophysiol., vol. 28, pp. 609-618.

Jewett, D. L., & Williston, J. S. (1971). “Auditory-evoked far fields averaged from the scalp of humans”, Brain., vol. 94, pp. 681-696.

Källstrand, J., Lewander, T., Baghdassarian, E., & Nielzén, S. (2014). “A new method for analyzing auditory brain-stem response waveforms using a moving-minimum subtraction procedure of digitized analog recordings”, Neuropsychiatric Disease and Treatment., vol. 2014; 10, pp. 1011-1016.

Kalman, R. E. (1960). “A new approach to linear filtering and prediction problems”, Transactions of the ASME - Journal of Basic Engineering., vol. 82, pp. 35-45.

Kalman, R. E., & Bucy, R. S. (1961). “New results in linear filtering and prediction theory”, Transactions of the ASME – Journal of Basic Engineering., vol. 83, pp. 95-107.

Kemp, D. T. (1978). “Stimulated acoustic emissions from within the human auditory system”, The Journal of the Acoustical Society of America, vol. 64, pp. 1386-1391.

Lotfi, Y., & Abdollahi, F. Z. (2012). “Age and gender effects on auditory brain stem response (ABR)”, Iranian Rehabilitation Journal., vol. 10, pp. 30-36.

Martin, D. K., Dille, M. F., Mcmillan, G., Griest, S., Mcdermott, D., Fausti, S. A., & Austin, D. F. (2012). “Age-related changes in the auditory brainstem response”, Journal of the American Academy of Auditory., vol. 23, pp. 18-35.

Mobley, K. J., & Gibson, E. (2000). “Tone burst evoked potentials: clinical applications”, Audiologyonline.

Olphen, V., Rodenburg, A. F. M., & Vervey, C. (1979). “Influence of stimulus repetition rate on brain-stem-evoked responses in man”, Audiology., vol. 18, pp. 388-394.

Omar, M. H., Salleh, S. H. S., Ming, T. C., Suraya, R. A., Kamarulafizam, & Swee T. T. (2012). “Kalman filter for ABR signal analysis”, Progress in Electromagnetics Research Symposium Proceedings., pp. 27-30.


Overbeck, G. W., & Church, M. W. (1992). “Effects of tone burst frequency and intensity on the auditory brainstem response (ABR) from albino and pigmented rats”, Hearing Research., vol. 59, pp. 129-137.

Picton, T. W., Stapells, D. R., & Campbell, K. B. (1981). “Auditory evoked potentials from the human cochlea and brainstem”, Journal of Otolaryngology., vol. 10, pp. 1-41.

Rosa, L. A. C., Suzuki, M. R., Angrisani, R. G., & Azevedo, M. F. (2014). “Auditory brainstem response: Reference-Value for age”, CoDAS., vol. 26, pp. 117-121.

Rowe, M. J. III. (1978). “Normal variability of the brain-stem auditory evoked response in young and old adult subjects”, Electroencephalography and Clinical Neurophysiology., vol. 44, pp. 459-470.

Skoe, E., & Kraus, N. (2010). “Auditory brain stem response to complex sounds: a tutorial”, Ear & Hearing., vol. 31, pp. 302-324.

Sininger, Y. S., Gardi, J. N., Morris, J. H. III., Martin, W. H., & Jewett, D. L. (1987). “The 3-channel Lissajous’ trajectory of the auditory brain-stem response. VII. Planar segments in humans”, Electroencephalography and Clinical Neurophysiology., vol. 68, pp. 368-379.

Sininger, Y. S., & Don, M. (1989). “Effects of click and electrode orientation on threshold of the auditory brainstem response”, Journal of Speech and Hearing Research., vol. 32, pp. 880-886.

Sininger, Y. S. (1993). “Auditory brain stem response for objective measures of hearing”, Ear & Hearing., vol. 14, pp. 23-30.

Sininger, Y. S., & Hyde, M. L. (2001). “Power-Optimized cumulative, sequential statistical method for detection of auditory evoked potentials”, United States Patent., US 6,200,273 B1.

Sininger, Y. S., Hyde, M. L., & Don, M. (2001). “Method for detection on auditory evoked potential using a point optimized variance ratio”, United States Patent., US 6,196,977 B1.
Stach, B. A. (1998). Clinical Audiologic, Singular Publishing Group Inc., San Diego, London.

Suzuki, T., Kobayashi, K., & Takagi, N. (1986). “Effects of stimulus repetition rate on slow and fast components of auditory brainstem responses”, Electroencephology and Clinical Neurophysiology., vol. 65, pp. 150-156.

Tanaka, Y., & Kaga, K. (1980). “Application of Brain Stem Response in Brain-Injured Children”, Brain Dev., vol. 2, pp.45-56.

Valderrama, J. T., Torre, A., Alvarez, I., Segura, J. C., Thornton, A. R. D., Sainz, M., & Vargas, J. L. (2014). “Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks”, Computer methods and programs in biomedicine., vol. 114, pp. 262-275.

White, K. R., & Culpepper, B. (1997). “Maintaining acceptably low referral rates in teoae-based newborn hearing screening programs”, Journal of Communication Disord., vol. 30, pp. 457-475.

White, K. R., Vohr, B. R., & Behrens, T. R. (1993). “Universal newborn hearing screening using transient evoked otoacoustic emissions: results of the Rhode Island hearing assessment project”, Seminars in Hearing., vol. 14, pp. 18-29.

林鴻清, 徐銘燦, 張克昌, M.Bruna, S. (2000). 嬰幼兒聽力篩檢. 耳鼻喉科醫學雜誌 35, 376-383.

林鴻清, 徐銘燦, 張克昌, 許權振, 林淑芬, 林玉珍, 吳穗華, 曾徳運, 翁瑞亨. (2004). 台灣新生兒聽力篩檢之現況. Formosan J Med 8, 42-49.



林鴻清. (2006). 新生兒聽力篩檢之必要性與實施. 臺灣醫學 10, 602-608.

林聖凱. (2015). 以嵌入式系統及Android為平台之無線自動聽性腦幹響應(AABR)量測系統。國立中央大學電機工程研究所碩士論文。

沈明來. (2007). 實用無母數統計學 (第二版)。

劉致中. (2011). 以個人數位助理為平台之短暫誘發耳聲傳射檢測儀。國立中央大學電機工程研究所碩士論文。

趙柏宇. (2017). 以無線自動聽性腦幹響應量測系統發展V波自動判別之方法。國立中央大學電機工程研究所碩士論文。

WHO. (2019). Deafness and hearing loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

國民健康署. (2018). 如何發現嬰幼兒聽力損傷~嬰幼兒聽力篩檢
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=147&pid=522

國民健康署. (2018). 新生兒聽力篩檢補助服務方案
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=515&pid=536

國民健康署. (2019). 新生兒聽力篩檢.
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1136&pid=3132
電子全文 電子全文(網際網路公開日期:20220731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔