(3.230.173.249) 您好！臺灣時間：2021/04/18 08:40

### 詳目顯示:::

:

• 被引用:2
• 點閱:194
• 評分:
• 下載:59
• 書目收藏:0
 摘要 iAbstract ii致謝 iii目錄 iv圖目錄 vi表目錄 ix第一章 緒論 11.1 研究動機與背景 11.2 文獻回顧 11.3 論文目標 31.4 論文架構 4第二章 系統架構與硬體介紹 52.1 系統架構 52.2 硬體架構 72.2.1 機器人端 72.2.2 手機端 112.2.3 深度學習訓練資料蒐集之雙眼攝影機 11第三章 深度學習之單眼距離估測 133.1 估測單張影像的深度學習網路架構 133.2 深度學習網路的訓練資料 153.3 視差轉深度的方程式 163.4 障礙物深度估測的計算方法 17第四章 機器人路徑規劃與避障控制 204.1 手機導航 204.1.1 兩點經緯度間的距離 224.1.2 兩點經緯度間的角度 224.1.3 導航控制 224.2 機器人路徑規劃 244.2.1 靠右行走的參考線 254.2.2 直走 294.2.3 轉彎 354.2.4 避障 354.3 機器人移動之模糊控制 38第五章 實驗結果 405.1 深度估測 405.2 機器人控制 445.2.1 手機導航 445.2.2 避障 465.2.3 直走 485.2.4 左轉 515.2.5 右轉 52第六章 結論與未來展望 536.1 結論 536.2 未來展望 53參考文獻 55
 [1] 賴怡靜, "基於深度學習之距離估測與自動避障的戶外導航機器人," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.[2] K. Karsch, C. Liu, and S. B. Kang, "Depth transfer: Depth extraction from video using non-parametric sampling," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 11, pp. 2144-2158, 2014.[3] D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image using a multi-scale deep network," in Advances in neural information processing systems, 2014, pp. 2366-2374.[4] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, "Deeper depth prediction with fully convolutional residual networks," in 2016 Fourth international conference on 3D vision (3DV), 2016: IEEE, pp. 239-248.[5] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.[6] J. Zbontar and Y. LeCun, "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches," Journal of Machine Learning Research, vol. 17, no. 1-32, p. 2, 2016.[7] N. Mayer et al., "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4040-4048.[8] J. Xie, R. Girshick, and A. Farhadi, "Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks," in European Conference on Computer Vision, 2016: Springer, pp. 842-857.[9] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, "Deepstereo: Learning to predict new views from the world's imagery," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5515-5524.[10] R. Garg, V. K. BG, G. Carneiro, and I. Reid, "Unsupervised cnn for single view depth estimation: Geometry to the rescue," in European Conference on Computer Vision, 2016: Springer, pp. 740-756.[11] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow, "Digging into self-supervised monocular depth estimation," arXiv preprint arXiv:1806.01260, 2018.[12] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, "Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos," arXiv preprint arXiv:1811.06152, 2018.[13] L. Doitsidis, A. Nelson, K. Valavanis, M. Long, and R. Murphy, "Experimental validation of a MATLAB based control architecture for multiple robot outdoor navigation," in Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., 2005: IEEE, pp. 1499-1505.[14] L. Doitsidis, K. P. Valavanis, and N. Tsourveloudis, "Fuzzy logic based autonomous skid steering vehicle navigation," in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 2002, vol. 2: IEEE, pp. 2171-2177.[15] G. Oriolo, G. Ulivi, and M. Vendittelli, "Real-time map building and navigation for autonomous robots in unknown environments," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 316-333, 1998.[16] C. Rusu, I. Birou, and E. Szöke, "Fuzzy based obstacle avoidance system for autonomous mobile robot," in 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, vol. 1: IEEE, pp. 1-6.[17] J. Levinson et al., "Towards fully autonomous driving: Systems and algorithms," in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011: IEEE, pp. 163-168.[18] B. Huval et al., "An empirical evaluation of deep learning on highway driving," arXiv preprint arXiv:1504.01716, 2015.[19] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3-D mapping with an RGB-D camera," IEEE transactions on robotics, vol. 30, no. 1, pp. 177-187, 2013.[20] J. Gaspar, N. Winters, and J. Santos-Victor, "Vision-based navigation and environmental representations with an omnidirectional camera," IEEE Transactions on robotics and automation, vol. 16, no. 6, pp. 890-898, 2000.[21] K. I. Khalilullah, S. Ota, T. Yasuda, and M. Jindai, "Development of robot navigation method based on single camera vision using deep learning," in 2017 56th annual conference of the society of instrument and control engineers of Japan (SICE), 2017: IEEE, pp. 939-942.[22] W. Born and C. Lowrance, "Smoother Robot Control from Convolutional Neural Networks Using Fuzzy Logic," in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018: IEEE, pp. 695-700.[23] (2019年, 6月). ZED [Online]. Available: https://www.stereolabs.com/zed/.[24] C. Godard, O. Mac Aodha, and G. J. Brostow, "Unsupervised monocular depth estimation with left-right consistency," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 270-279.[25] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural network architecture for real-time semantic segmentation," arXiv preprint arXiv:1606.02147, 2016.[26] (2019年, 6月). Haversine formula [Online]. Available: https://en.wikipedia.org/wiki/Haversine_formula.[27] (2019年, 6月). Spherical trigonometry [Online]. Available: https://en.wikipedia.org/wiki/Spherical_trigonometry.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 基於深度學習之距離估測與自動避障的戶外導航機器人

 無相關期刊

 無相關點閱論文

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室