(3.230.143.40) 您好!臺灣時間:2021/04/21 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:杜金麟
研究生(外文):Jin-Lin Du
論文名稱:數位控制之LLC諧振轉換器設計與實現
論文名稱(外文):Design and Implementation of Digital Controlled LLC Resonant Converter
指導教授:徐國鎧
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:LLC 諧振轉換器零電壓切換一階諧波近似方法
外文關鍵詞:STM32F103C8T6LLC resonant converterzero voltage switchingfirst-order harmonic approximation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研製一台數位控制之LLC諧振轉換器,在DC/DC的電源轉換器上,LLC諧振轉換器是透過開關的寄生電容與諧振槽達零電壓切換的優勢,降低開關的切換損失同時減少寄生元件所引起的不良效應,當輸入電壓下降時亦可透過變頻的方式提高電壓增益,維持輸出端的穩定。電路分析使用一階諧波近似方法,搭配MATLAB模擬出電壓增益對頻率響應圖,從中了解品質因數Q_e與電感比值K對電路的影響。透過數位回授控制系統取代傳統類比IC,可以節省許多的類比的輔助電路,因為在傳統回授設計上傳統類比IC設計較為困難且複雜,尤其在頻率、控制方法都會受到參數設計上的限制,而數位控制具有響應快、靈活性強、環境敏感度低、受溫度、零件老化影響較小等優勢,本論文最後實作出一台144W之DC/DC電源供應器,其輸入電壓為380 ~ 400V,輸出直流電壓24V,滿載輸出電流6A,其軟硬整合以實驗結果驗證理論分析,並研擬未來研究方向。
This paper mainly develops a digitally controlled LLC resonant converter. On the DC/DC power converter, with parasitic capacitance and resonant tank, the LLC resonant converter has the advantage of zero voltage switching, reducing the switching loss of the switch and adverse effects caused by parasitic components. When the input voltage drops, the voltage gain can also be increased by means of frequency conversion to maintain the stability of the output. The circuit analysis uses the first-order harmonic approximation method. With MATLAB, the voltage gain vs. frequency response graph is simulated, and the influences of the quality factor Q_e and inductance ratio K to the circuit are known. Replacing traditional analog
ICs with digital feedback control systems can save many auxiliary circuits, because traditional analog IC design is difficult and complicated in traditional feedback design, especially in frequency and control methods. Digital control has the advantages of fast response, high flexibility, low environmental sensitivity, and low temperature and component aging. At the end, this paper design a 144W DC/DC power supply with an input voltage of 380 ~ 400V and output DC voltage of 24V with the full-load output current 6A. The soft and hard integration is verified by experimental results. Finally the future possible research is mentioned.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 1
1-3文獻回顧 3
1-4內容大綱 5
第二章 LLC諧振轉換器之原理與分析 6
2-1開關的切換損失 6
2-2電路架構 7
2-3動作原理 12
2-4特性分析 20
2-4-1電壓增益函數分析 21
2-4-2 K值、Qe值對電壓增益的影響 25
2-4-3 K值大小與效率的關係與取捨 30
第三章 整體電源轉換器之設計 31
3-1電路規格設計 31
3-1-1元件參數設計 33
3-1-2 PSIM模擬 40
3-2 微控制器及周邊電路 44
3-3 LLC諧振轉換器回授控制分析 46
3-3-1 PI控制器介紹 46
3-3-2 數位控制流程與模擬 47
第四章 實驗結果與討論 56
4-1 半橋LLC諧振轉換器之量測波形 57
4-2 整體電源轉換器之數據量測 64
第五章 結論與未來展望 67
參考文獻 68
[1] W. J. Gu and K. Harada, “A new method to regulate resonant converters,”
IEEE Trans. Power Electron., vol. 3, no. 4, pp. 430-439, 1988.
[2] A. K. S. Bhat, “Analysis, optimization and design of a series-parallel resonant converter,” in Proc. IEEE APEC, pp. 155-164, 1990.
[3] F. C. Lee, “High-frequency quasi-resonant converter technologies,”
Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988.
[4] K. H. Liu and F. C. Lee., “Zero-voltage switching technique in DC-DC converters,” IEEE Trans. Ind. Electron., vol. 5, no. 3, pp. 293-304, 1986.
[5] R. Liu, and C. Q. Lee, “Analysis and design of LLC-type series resonant convertor,” Electron. Lett., vol. 24, no. 24, pp. 1517 -1519, 1988.
[6] Energy Star, 2007: http://www.energystar.gov/
[7] European Commission, 2007: http://ec.europa.eu/index_en.htm
[8] STMicroelectronics.STM32F103xC,STM32F103xD,STM32F103Xe
[Datasheet-production data].Retrieved from http://www.st.com/content/ccc/resource/technical/document/datasheet/33/d4/6f/1d/4c/6d/CD00161566.pdf/files/CD00161566.pdf/jcr:content/translations/en.CD00161566.pdf
[9] SHEN Hong-wei, WANG Jian-jun, ZHANG Hao-dong, TAN Wen-hua, WAN
Zhi-hua, "Research of Digital Controlled LLC Converter Based on STM32", Beijing Aerospace Launch Technology Research Insitute., vol. 35, no. 9, Sep. 2018.
[10] Shu Zhong, Jianping Xu, Sheng Zhao, Xiang Zhou, “Bi-frequency control
for LLC resonant converter with fast transient response” Electron. Lett., vol. 52 no. 20 pp. 1710–1712333, Sep. 2016.
[11] Zhiyuan Hu, Laili Wang, Yan-Fei Liu, P. C. Sen, “Bang-Bang Charge Control for LLC Resonant Converters” IEEE Trans. Power Electron., vol. 30, no. 2, Feb. 2015.
[12] Haiyan Pan, Chao He, Farooq Ajmal, Henglin Chen, Guozhu Chen, “Pulse-
width modulation control strategy for high efficiency LLC resonant converter with light load applications” IET Power Electron., vol. 7, no. 11, pp. 2887–2894, 2014.
[13] J.-W. Kim, J.-K. Han and J.-S. Lai, “APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency” Electron. Lett., vol. 53, no. 5, pp. 339–341. Mar. 2017.
[14] Haoyu Wang, Zhiqing Li, “A PWM LLC Type Resonant Converter Adapted to Wide Output Range in PEV Charging Applications” IEEE Trans. Power Electron., vol. 33, no. 5, May. 2018.
[15] B.-R. Lin, J.-J. Chen, C.-L. Yang, “Analysis and implementation of dual-output LLC resonant converter” IEEE Int. Conf. Industrial Technology, 2008.
[16] Yijie Wang, Yueshi Guan, Xiangjun Zhang and Dianguo Xu,” Single-stage
LED driver with low bus voltage” Electron. Lett., vol. 49 , no. 7,pp. 455 – 457, Mar. 2013.
[17] B. Wang, X. Xin, “Analysis and Implementation of LLC Burst Mode for Light Load Efficiency Improvement,” in Proc. IEEE APEC, pp. 58-64, 2009.
[18] W. Feng, F.-C. Lee, “LLC resonant converter burst mode control with constant burst time and optimal switching pattern,” in Proc. IEEE APEC, pp. 6-12, 2011.
[19] R. Beiranvand, “Optimizing the LLC–LC Resonant Converter Topology for Wide-Output-Voltage and Wide-Output-Load Applications,” IEEE Trans. Power Electron., vol. 26, pp. 3192-3204, 2011.
[20] S. Kim and P. N. Enjeti, “A Modular Single-Phase Power-Factor- Correction Scheme With a Harmonic Filtering Function,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 328-335, Apr. 2003.
[21] N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics,” Third Edition, John Wiley & Sons, 2003.
[22] K. Raggl, T. Nussbaumer, G. Doerig, J. Biela and J. W. Kolar, “Comprehensive Design and Optimization of a High-Power-Density Single-Phase Boost PFC,” IEEE Trans. on Power Electron., vol. 56, pp. 2574-2587, Jul. 2009.
[23] M. Matsuo, K. Matsui, I. Yamamoto and F. Ueda, “A comparison of various DC-DC converters and their application to power factor correction,” IEEE Ind. Electron. Society, vol. 2, pp. 1007-1013, Oct. 2000.
[24] M. S. Dawande and G. K Dubey, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Trans. Power Electron., vol. 11, pp. 585-591, Jul. 1996.
[25] C. A. Canesin, and I. Barbi, “Analysis and Design of Constant-Frequency Peak-Current-Controlled High-Power-Factor Boost Rectifier with Slope Compensation,” in Proc. IEEE APEC, pp. 807-813, 1996.
[26] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuno and J. A. Martinez, “Average current mode control of series-switching post-regulators used in power factor correctors,” IEEE Trans. Power Electron., vol. 15, pp. 813-819, Sep. 2000.
[27] R. Srinivasan and R. Oruganti, “ A unity power factor converter using half-bridge boost topology,"IEEE Trans. Power Electron., vol. 13, no. 3, pp. 487-500, May. 1998.
[28] L. Huber, B. T. Irving and M. M. Jovanovic, “Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1649-1657, Jul. 2008.
[29] J. W. Kim, S. M. Choi and K. T. Kim, ”Variable on-time control of the critical conduction mode boost power factor correction converter to improve zero-crossing distortion,” in Proc. IEEE PEDS, pp. 1542-1546, 2005.
[30] G. C. Chryssis, “High Frequency Switching Power Supplies: Theory & Design,” McGraw-Hill, 1989.
[31] A. I. Pressman, “Switching Power Supply Design,” Second Edition, McGraw-Hill, 1999.
[32] G. C Hsieh, C. Y. Tsai, and S. H. Hsieh, “Design considerations for LLC series-resonant converter in two-resonant regions,” in Proc. IEEE PESC, pp. 731-736, 2007.
[33] Jae-Bum Lee, Jae-Kuk Kim, Jae-Il Baek, Jae-Hyun Kim, Gun-Woo Moon, “Resonant Capacitor On/Off Control of Half-Bridge LLC Converter for High-Efficiency Server Power Supply” IEEE Trans. Ind. Electron., vol. 63, no. 9, Sep. 2016.
[34] 陳玨龍,「諧振電容控制之LLC諧振轉換器設計與實現」,國立中央大
電機工程學系,碩士論文,民國107年6月。
[35]楊庭越,「具功因修正之半橋LLC諧振轉換器設計與實現」,國立中央大學電機工程學系,碩士論文,民國106年6月。
[36]溫雅婷,「LLC諧振轉換器設計與實現」,國立中央大電機工程學系,碩士論文,民國105年6月。
[37] Haiyan Pan, Chao He, Farooq Ajmal, Henglin Chen, Guozhu Chen, “Pulse-width modulation control strategy for high efficiency LLC resonant converter with light load applications” IET Power Electron., vol. 7, no. 11, pp. 2887–2894. 2014.
[38] J.-W. Kim, J.-K. Han and J.-S. Lai, “APWM adapted half-bridge LLC converter with voltage doubler rectifier for improving light load efficiency” Electron. Lett., vol. 53, no. 5, pp. 339–341, Mar. 2017.
[39] H. Ma, J.-S. Lai, C. Zheng, P. Sun, "A high-efficiency quasi-single-stage
bridgeless electrolytic capacitor-free high-power AC-DC driver for supplying multiple LED strings in parallel", IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5825-5836, Aug. 2016.
[40] C.-A. Cheng, C.-H. Chang, T.-Y. Chung, F.-L. Yang, "Design and
implementation of a single-stage driver for supplying an LED street-lighting module with power factor corrections", IEEE Trans. Power Electron., vol. 30, no. 2, pp. 956-966, Feb. 2015.
[41] STMicroelectronics, "High-Voltage High and Low Side Driver", L6385 data
sheet, Mar. 2003.
[42] Alan B. Arehart, William A. Wolovich, "Bumpless switching controllers" , in Proc. IEEE Conf. Decision and Control, pp. 13-13, Dec. 1996.
[43] Serhiy Shcherbovskykh , Krzysztof Kozlowski , Dariusz Pazderski , "Evaluation of Integral Anti-Windup Feedback Coefficient for PI Regulator"IEEE 9th Int. Conf. Dependable Systems, Services and Technologies (DESSERT) , pp. 24-27, May. 2018.
電子全文 電子全文(網際網路公開日期:20240819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔