(18.206.177.17) 您好!臺灣時間:2021/04/23 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯佐柄
研究生(外文):Zuo-Bing Hou
論文名稱:複合式添加劑對鋅空氣電池抑制析氫與樹枝狀結構影響研究
論文名稱(外文):Inhibition of the hydrogen evolution and dendritic formation in the zinc-air battery by combined additives in the electrolyte
指導教授:林景崎
指導教授(外文):Jing-Chie Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:125
中文關鍵詞:鋅空氣電池發泡鎳電極基材複合式添加劑
外文關鍵詞:Zn-air batteryElectrochemical studiesComposite additivesCapacity retention rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究主旨為探討電解液中加入複合式添加劑,對於鋅空氣電池的自放電腐蝕析氫與充電時生成樹枝狀結構等現象之抑制,並測試不同複合式添加劑對於鋅空氣電池循環充放電效能影響。電池使用發泡鎳為基材,經錫表面改質與預鍍鋅兩步驟,製作穩定性陽極;基礎電解液為含醋酸鋅之鹼性溶液(8M KOH + 0.45M Zn(CH3COO)2);電解液添加劑選擇乙二胺四乙酸(EDTA)、酒石酸(Tartaric acid)、3-乙基-3-戊醇(3-Ethyl-3-pentanol)、聚山梨醇酯二十(Tween 20)與氯化亞錫(SnCl2)等單獨加入電解液中,首先以循環伏安法(Cyclic voltammetry, CV)找尋單一添加劑的最佳參數,再由線性極化法(Tafel polarization)、電化學阻抗頻譜法(Electrochemical impedance spectroscopy , EIS)與掃描式電子顯微鏡(Scanning electron spectroscopy, SEM)觀察鋅極表面形貌,來驗證各種單一添加劑的優劣。根據實驗結果,選出EDTA、3-Ethyl-3-pentanol與SnCl2三種添加劑來互相混和,做為複合添加劑選用的參考。循環伏安法、電化學阻抗頻譜法分析以及鋅電極之SEM形貌觀察等結果顯示複合添加較單一添加劑在抑制析氫反應有較好效果,尤以3.4mM EDTA+5.2mM SnCl2與12.9mM 3-Ethyl-3-pentanol+5.2mM SnCl2兩種複合添加劑之效能最佳。於是,最後選擇此兩種複合添加劑運用製作全電池,進行全電池充放電量測,經多次充放電循環測試後,比較電池穩定性與電池電容量變化,結果顯示3.4mM EDTA+5.2mM SnCl2的極化電阻較高(Rp=1613.7 Ω/cm2),循環壽命較高(250 cycles),電容量較高(仍有244.5 mAh/g),電容量保留率較佳(仍保有81.5%效果)。
In the present work, an attempt was made to enhance the cyclic life of charging-recharging and retention rate of electric capacity for a zinc-air battery by modifying its electrolyte in terms of additives. Organic (such as EDTA; tartaric acid; 3-Ethyl-3-pentanol; Tween 20) and inorganic (like SnCl2) compounds were singly or combined used as the additives to study the inhibition of the Zn-dendritic formation resultant from charging process and zinc-corrosion owing to self-discharge of the cell. Electrochemical tools included cyclic voltammetry, linear and Tafel polarization and electrochemical impedance spectroscopy (EIS) with an aid of morphological observation through a scanning electron microscopy (SEM) were used to evaluate the efficiency of the additives. Resulting from CV analysis, we found that combined use of the additives is better than single use. The role of 3.4mM EDTA leads to hinder the hydrogen evolution; the role of 12.9mM 3-ethyl-3-pentnaol results in a reduction of Zn-dendritic growth; and addition of 5.2mM SnCl2 improves the bath conductivity of the cell. In the system involving combined additives, we found that a combination between 3.4mM EDTA+5.2mM SnCl2 and that between 12.9mM 3-Ethyl-3-pentanol+5.2mM SnCl2 reveal better inhibition in hydrogen evolution than their single use. Both types of combined additives were utilized to assemble a complete Zn-air single cell for charging-discharging test. After 250 times of cyclic test, the cell modified by 3.4mM EDTA+5.2mM SnCl2 reveals the best energetic capacity (remaining 244.5 mAh/g) with the highest retention rate in capacity (roughly at 81.5%).
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章、序論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 4
第二章、文獻回顧 5
2-1 金屬空氣電池 5
2-1-1 金屬空氣電池簡介 5
2-1-2 金屬空氣電池種類 5
2-2 鋅空氣電池 6
2-2-1 鋅空氣電池簡介 6
2-2-2 鋅電極 7
2-2-2-1 鋅電極之構成 7
2-2-2-2 鋅電極之反應 8
2-2-3 空氣電極 9
2-2-3-1 空氣電極之構成 9
2-3-3-2 空氣電極之反應 10
2-2-4 電解液 11
2-3 電解液添加劑 11
2-4 鋅空氣電池外在影響因素 16
2-4-1 濕度影響 16
2-4-2 溫度影響 16
2-5 鋅空氣電池之款式 17
2-5-1 電化學再充式鋅空氣二次電池 17
2-5-2 三極式鋅空氣二次電池 17
2-5-3 機械外部再充式鋅空氣二次電池 17
第三章、實驗步驟與方法 19
3-1 實驗規劃說明 19
3-2 實驗藥品 19
3-3 實驗儀器設備 20
3-4 Ni foam表面鍍錫後鍍鋅 21
3-5 電解液與複合式添加劑 21
3-6 全電池組裝 22
3-7 材料分析 22
3-7-1 場發射掃描式電子顯微鏡 22
3-7-2 循環伏安法 22
3-7-3 線性極化法 24
3-7-4 電化學阻抗頻譜法 24
3-7-5 全電池充放電測試 26
第四章、結果 28
4-1 基材改質結果 28
4-2 CV循環伏安法結果 28
4-3 極化分析法結果(含Tafel與線性極化) 29
4-4 電化學阻抗頻譜法結果 30
4-5 SEM表面形貌結果 31
4-6 全電池性能結果 31
第五章、討論 32
5-1 基材的影響 32
5-2 電解液添加劑濃度對自腐蝕析氫之影響分析 33
5-3 Tafel分析 35
5-4 線性極化分析 36
5-5 電化學阻抗頻譜法分析 36
5-6 SEM表面形貌分析 37
5-7 全電池性能分析 38
第六章、結論與展望 40
6-1 結論 40
6-2 未來展望 41
第七章、參考文獻 42
1. P. Alotto, M. Guarnieri, F. Moro, “Redox flow batteries for the storage of renewable energy: A review”, Renewable and Sustainable Energy Reviews, Vol. 29, 2014, pp. 325-335.
2. F. Cheng, J. Chen, “Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts”, Chemical Society Reviews, Vol. 41, 2012, pp. 2172-2192.
3. H. Ma, B. Wang, Y. Fan, W. Hong, “Development and characterization of an electrically rechargeable zinc-air battery stack”, Energies, Vol. 7, 2014, pp. 6549-6557.
4. M. Xu, D. G. Ivey, Z. Xie, W. Qu, “Rechargeable zinc-air batteries: Progress in electrolyte development and cell configuration advancement”, Journal of Power Sources, Vol. 283, 2015, pp. 358-371.
5. A. R. Mainar, E. Iruin, L. C. Colmenares, “An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc”, Journal of Energy Storage, Vol. 15, 2018, pp. 304-328.
6. E. McCafferty, “Thermodynamics of corrosion: Pourbaix diagrams”, Introduction to Corrosion Science, 2009, pp. 95-117.
7. K. Bass, P. J. Mitchell, G. D. Wilcox, “The electrodeposition of zinc onto graphitic carbon substrates from alkaline electrolytes”, Journal of Power Sources, Vol. 24, 1988, pp. 21-29.
8. J. Dundalek, I. Snajdr, O. Libansky, “Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction”, Journal of Power Sources, Vol. 372, 2017, pp. 221-226.
9. S. Thomas, S. Cole, M. Sridhar, N. Birbilis, “Revisiting zinc passivation in alkaline solutions”, Electrochimica Acta, Vol. 97, 2013, pp.192-201.
10. F. Touri, A. Sahari, A. Zouaoui, F. Deflorian, “Detection and characterization of ZnO on a passive film of pure zinc”, International Journal of Electrochemical Science, Vol. 12, 2017, pp. 10813-10823.
11. C. W. Lee, S. W. Eom, M. S. Yun, “Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery”, Journal of Power Sources, Vol. 160, 2006, pp. 1436-1441.
12. S. J. Banik and R. Akolkar, “Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive”, Journal of Electrochemical Society, Vol. 160, 2013, pp. D519-D523.
13. A. Rahman, X. Wang, C. Wen, “High energy density metal-air batteries: A review”, Journal of The Electrochemical Society, Vol. 160, 2013, pp. A1759-A1771.
14. T. B. Reddy, “Linden’s handbook of batteries”, McGraw-Hill Education, 4th edn, 2011.
15. Y. G. Li, H. J. Dai, “Recent advances in zinc–air batteries”, Chemical Society Reviews, Vol. 43, 2014, pp. 5257-5275.
16. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. L. Liu, K. T. Lee, J. Cho, “Metal-air batteries with high energy density: Li-air versus Zn-air”, Advanced Energy Materials, Vol. 1, 2011, pp. 34-50.
17. M. Prabu, P. Ramakrishnan, H. Nara, T. Osaka, “Zinc-air battery: Understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions” ACS Applied Materials and Interfaces, Vol. 6, 2014, pp. 16545-16555.
18. C. C. Yang, W. C. Chien, C. L. Wang, C. Y. Wu, “Study the effect of conductive fillers on a secondary Zn electrode based on ball-milled ZnO and Ca(OH)2 mixture powders”, Journal of Power Sources, Vol. 172, 2007, pp. 435-445.
19. F. Santos, J. Abad, M. Vila, G. R. Castro, A. Urbina, “In situ synchrotron x-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: Influence on ZnO deposition”, Electrochimica Acta, Vol. 281, 2018, pp. 133-141.
20. P. Pei, K. Wang, Z. Ma, “Technologies for extending zinc-air battery’s cyclelife: A review”, Applied Energy, Vol. 128, 2014, pp. 315-324.
21. 張嘉元,“鋅系電極之製備,電化學行為探討與材料特性的分析”,國立中正大學碩士論文,民國93年。
22. J. F. Parker, C. N. Chervin, I. R. Pala, M. F. Burz, J. W. Long, “Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion”, Science, Vol. 356, 2017, pp. 415-418.
23. W.H. Zhu, B.A. Poole, D.R. Cahela, B.J. Tatarchuk, “New structures of thin air cathodes for zinc-air batteries”, Journal of Applied Electrochemistry, Vol. 33, 2003, pp. 29-36.
24. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, Z. Liu, “Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts”, American Chemical Society Catalysis, Vol. 5, 2015, pp. 4643-4667.
25. M. L. Calegaro, F. H. B. Lima, E. A. Ticianelli, “Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions”, Journal of Power Sources, Vol. 158, 2006, pp. 735-739.
26. P. Sapkota, H. Kim, “Zinc-air fuel cell, a potential candidate for alternative energy”, Journal of Industrial and Engineering Chemistry, Vol. 15, 2009, pp. 445-450.
27. A. A. Mohamad, “Zn/gelled 6M KOH/O2 zinc-air battery”, Journal of Power Sources, Vol. 159, 2006, pp. 752-757.
28. R. N. Snyder, J. J. Lander, “Rate of hydrogen evolution of zinc electrodes in alkaline solutions”, Electrochemical Technology, Vol. 3, 1965, pp. 161-166.
29. 紀元發,“鋅空氣電池之空氣陰極研究-新電極結構與新碳材料”,國立清華大學碩士論文,民國94年。
30. 辛毓真,“鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究”,國立交通大學碩士論文,民國95年。
31. 謝佳峻,“以化學與電鍍法製作三維多孔金屬電極並應用於鋅空氣電池”,國立清華大學碩士論文,民國105年。
32. 黃識軒,“核殼式陽極結構與電解液添加劑對鋅漿料空氣電池之電化學特性影響研究”,國立中央大學碩士論文,民國105年。
33. H. Yang, Y. Cao, X. Ai, L. Xiao, “Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives”, Journal of Power Sources, Vol. 128, 2004, pp. 97-101.
34. Y. Xiao, J. Shi, F. Zhao, Z. Zhang, W. He, “Effects of electrolyte additives on the properties of zinc-bismuth electrodes in zinc-air batteries”, Journal of The Electrochemical Society, Vol. 165, 2018, pp. A47-A54.
35. M. C. Huang, S. H. Huang, C. C. Wu, J. C. Lin, “Improved electrochemical performance of Zn–air secondary batteries via novel organic additives”, Journal of the Chinese Chemical Society, 2018, pp. 1-6.
36. K. Liua, P. Hea, H. Baia, J. Chen, “Effects of dodecyltrimethylammonium bromide surfactant on both corrosion and passivation behaviors of zinc electrodes in alkaline solution”, Materials Chemistry and Physics, Vol. 199, 2017, pp. 73-78.
37. M. Azhagurajan, A. Nakata, H. Arai, “Effect of vanillin to prevent the dendrite growth of Zn in zinc-based secondary batteries”, Journal of The Electrochemical Society, Vol. 164, 2017, pp. A2407-A2417.
38. X. Li, M. Liang, H. Zhou, W. Li, “Composite of indium and polysorbate 20 as inhibitor for zinc corrosion in alkaline solution”, Bulletin of the Korean Chemical Society, Vol. 33, 2012, pp. 1566-1570.
39. M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, “Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries”, Journal of Applied Electrochemistry, Vol. 41, 2011, pp. 991-997.
40. M. Liang, H. Zhou, Q. Huang, W. Li, M. Xu, “Investigation on synergism of composite additives for zinc corrosion inhibition in alkaline solution”, Materials Chemistry and Physics, Vol. 128, 2011, pp. 214-219.
41. T. R. Crompton, “Battery reference book”, Newnes, 3rd edn, 2000.
42. T. P. Dirkse, R. Timmer, “The corrosion of zinc in KOH solutions”, Journal of Electrochemical Society, Vol. 116, 1969, pp. 162-165.
43. 劉奎府,“氧化銅催化劑應用於鋅空氣燃料電池陰極之研究”,國立交通大學碩士論文,民國94年。
44. 蘇聖傑,“鋅空氣電池陰極材料製備與特性分析”,國立台灣大學碩士論文,民國90年。
45. 黃雅君,“過渡金屬氧化物觸媒應用於鋅空氣燃料電池陰極之研究”,國立交通大學碩士論文,民國93年。
46. V. Caramia, B. Bozzini, “Materials science aspects of zinc-air batteries: a review”, Materials for Renewable and Sustainable Energy, Vol. 3, 2014, pp. 1-12.
47. 謝欣宜,“以發泡鎳網作為鋅二次電池陽極集電網之電化學特性分析”,國立中央大學碩士論文,民國105年。
48. S. Fashu, C. D. Gu, J. L. Zhang, M. L. Huang, X. L. Wang, J. P. Tu, “Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid”, Transactions of Nonferrous Metals Society of China, Vol 25, 2015, pp. 2054-2064.
49. Y. E. Eli, M. Auinat, D. Starosvetsky, “Electrochemical and surface studies of zinc in alkaline sloutions containing organic corrosion inhibitors”, Journal of Power Sources, Vol. 114, 2003, pp. 330-337.
50. D. D. Macdonald, “Reflections on the history of electrochemical impedance spectroscopy”, Electrochimica Acta, Vol. 51, 2006, pp. 1376-1388.
51. M. Cai, S. M. Park, “Oxidation of zinc in alkaline solutions studied by electrochemical impedance spectroscopy”, Journal of Electrochemical Society, Vol. 143, 1996, pp. 3895-3902.
52. P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, H. Pang, “Rechargeable zinc-air batteries: A promising way to green energy”, Journal of Materials Chemistry A, Vol. 5, 2017, pp. 7651-7666.
53. J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Flower, Z. Chen, “Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives”, Advanced Materials, Vol. 29, 2017, pp. 1-34.
54. X. Wei, S. Banerjee, “Effect of substrates on zinc anode – Secondary alkaline battery performance”, The Electrochemical Society, 2014, pp. 98.
55. X. Wei, D. Desai, G. Yadav, D. Turney, “Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries”, Electrochimica Acta, Vol. 212, 2016, pp. 603-613.
56. R. E. Azooz, “EDTA as a corrosion inhibitor for Al in 0.5M HCl: adsorption, thermodynamic and theoretical study”, Journal of Electrochemical Science and Engineering, Vol. 6, 2016, pp. 235-251.
57. J. Y. Lee, J. W. Kim, H. T. Kim, “Effects of organic additives on initial stages of zinc electroplating on iron”, Journal of The Electrochemical Society, Vol. 151, 2004, pp. C25-C31.
58. A. Sumboja, P. L. Sambegoro, “A stability improvement of rechargeable Zn-air batteries by introducing thiourea and polyethylenimine as electrolyte additives”, 5th International Conference on Electric Vehicular Technology, 2018, pp. 128-131.
59. K. Sun, T. Hoang, Y. Yu, “Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries”, Applied Materials and Interfaces, Vol. 9, 2017, pp. 9681-9687.
電子全文 電子全文(網際網路公開日期:20240601)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔