(3.234.221.162) 您好!臺灣時間:2021/04/14 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖承恩
研究生(外文):Cheng-En Liao
論文名稱:移動式顆粒床過濾器之去除焦油效率的研究
論文名稱(外文):A Study of the Tar Removal Efficiency of Moving Granular Bed Filter
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:顆粒床過濾器中高溫除塵技術中高溫除焦油技術淨煤技術
外文關鍵詞:Granular bed filterHot gas cleanTar removalClean coal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,人們享受時代演進帶來便利的同時,更多思考如何使用更加潔淨的能源,以達到節能減碳、減少地球負擔的目的。雖然新興的再生能源日益增加,但在台灣目前仍以火力發電為主,使用煤炭轉換為電力的過程中,則會產生大量的汙染物,如粉塵、氣態汙染物及焦油等。這些汙染物若不去除乾淨,不僅會造成後方渦輪機發電機組及管線的損壞,更會造成環境的汙染,故如何防治污染為重要的課題。而根據先前開發之移動式顆粒床中高溫除塵技術,在連續粉塵過濾測試中,於常溫能達到過濾效率98%,而於高溫600℃時,過濾效率仍可達到89%。但應用於工業氣化爐時,合成氣中不只有粉塵,更包含了焦油等化學成份,因此本研究將更進一步探討移動式顆粒床過濾器應用於中高溫去除焦油。
藉由加熱、氣送及焦油氣氛系統,控制顆粒床過濾器之入口溫度,使系統達到高溫狀態,藉此模擬氣化爐之出口情況。以顆粒床過濾器於移動床模式中,所產生之前後溫度差,配合焦油露點溫度之特性,使焦油凝結於濾材中,達到焦油去除之效果,再藉由後端之氣體採樣進行分析,比較入出口濃度以計算過濾效率,藉由改變入口風速、溫度及濾材質量流率,探討中高溫顆粒床過濾器之效率影響。
實驗結果顯示,焦油過濾效率隨著溫度及表面風速的上升而下降,於焦油模組濃度50 g/Nm^3、風速1.8 m/s及濾材質量流率300 g/min進行實驗時,於150℃時可達過濾效率99.03%,而在350℃時,過濾效率仍可維持至92.3%。
While enjoying the convenience resulted from the technological advances, human beings also ponder on how to use cleaner energy, with an eye to reducing the carbon production. Although the types of renewable energy are increasing, thermal power generation still ranks as the primary way of power generation in Taiwan. The conversion of coal into electricity also produces a large amount of pollutants, such as dust, tar, and other gaseous pollutants. If not removed, these pollutants will not only do damage to the turbine generators and pipelines in the rear, but also cause environmental pollution. Therefore, the development of dust removal technology has become an issue of vital interest. According to current tar removal technology at high temperature, the moving granular bed filter exhibits a filtration efficiency of 89% at 600℃ in the continuous dust filtration tests. However, when this technology is applied to the industrial gasifier, in the syngas the tar is still detected. This research attempts to explore how a moving granular bed filter could be used to remove tar at high temperature.
In order to simulate the outlet of the gasifier, a heater, an air delivery system and a tar generation system are utilized to bring the granular bed filter to a high temperature state. In the moving bed mode, the syngas is cooled to the dew point temperature by the GBF and the tar is condensed in the filter, bringing about an effect of tar removal. As for the filtration efficiency, the concentration of inlet and that of outlet are analyzed and compared. By altering the inlet temperature, the inlet superficial velocity, and mass flow rate of the filter, the factors affecting the overall efficiency of GBF at medium and high temperature are to be further investigated.
The research results show that the filtration efficiency lowers as the inlet temperature and inlet superficial velocity rise. Under the circumstance of a tar concentration of 50 g/Nm^3, an inlet superficial velocity at 1.8 m/s, and a mass flow rate at 300 g/min, a tar removal efficiency of 99.03% is achieved at 150℃, and it could be maintained at 92.3% at 350℃.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
符號說明 X
第一章 緒論 1
1.1前言 1
1.2粒狀汙染物之過濾設備及原理 3
1.3氣態汙染物之處理機制及原理 5
1.4 焦油介紹 6
1.5 顆粒床系統簡介 8
1.6 文獻回顧 8
1.7 研究動機與目的 12
1.8 論文章節架構 13
第二章 實驗設備與方法 24
2.1 中高溫顆粒床焦油過濾實驗設備 24
2.1.1 實驗材料及量測設備 24
2.1.2 實驗設備 26
2.2 過濾機制與實驗方法 29
2.2.1 焦油過濾機制 29
2.2.2 微粒過濾機制 29
2.2.3 實驗方法與參數 31
2.2.4 實驗步驟 33
第三章 實驗結果與討論 46
3.1 溫度對過濾效率之影響 46
3.2 濾材質量流率對過濾效率之影響 48
3.3 表面風速對過濾效率之影響 50
3.4 顆粒床體內壓降現象之影響 51
第四章 結論 64
第五章 參考文獻 65
[1] IPCC, 氣候變化2014綜合報告, 政府間氣候變化專門委員會, 瑞士日内瓦, 2015.
[2] IPCC, “Special Report Global Warming of 1.5°C,” Intergovernmental Panel on Climate Change , 2018.
[3] 台灣電力公司, 台灣系統歷年裝置容量統計, “www.taipower.com.tw/tc/,” Accessed: 20 February 2019.
[4] IEA, World Energy Outlook 2015, International Energy Agency, Paris France, 2015.
[5] 姚向君, 田宜水,生質能源 : 綠色黃金開發技術,一版,新文京開發出版股份有限公司,台北,民國九十七年
[6] Maduna, K., Tomašić, V., Air pollution engineering. Physical Sciences Reviews, Vol 2, 2017
[7] Flagan, R. C., Seinfeld, J. H., “Fundamentals of air pollution Engineering,” Prentice-Hall, Inc. 1998.
[8] Kaufmann, E., Bouman, D., Theunis, A., Kleiberg, X., Megen, R. van, “Black Carbon Reduction,” Rotterdam Mainport University of Applied and Sciences, 2014.
[9] Zhang, H., Ahmadi, G., “Particle transport and deposition in the hot-gas filter vessel at Wilsonville,” Powder Technology, Vol. 116, pp. 53–68, 2001.
[10] Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Luo, Z. and Cen, K.,
“A Promising Technology for Hot Gas Clean-Up,” Powder Technology, Vol. 244, pp. 93–99, 2013.
[11] Basu, P., (Third Edition) “Biomass Gasification, Pyrolysis and Torrefaction,” Academic press, Halifax, NS, Canada, 2018.
[12] Quanguo, Z., Qunfa, Y., Fengming, F. (2004) “Thermophysical characteristics of the biomass tar from a crop stalk gasification system,” International journal of global energy issues, 21(1-2), 144–153.
[13] Li, C., and Suzuki, K., “Tar property, analysis, reforming mechanism and model for biomass gasification— An overview,” Renewable and Sustainable Energy Reviews, Vol 13, pp. 594-604, 2009.
[14] Chen, Y. S., Hsiau, S. S., Laia, S. C., Chyoub, Y. P., Lia, H. Y. and Hsu, C. J.,
“Filtration of dust particulates with a moving granular bed filter,” Vol 171, pp. 987-994, 2009.
[15] Kuo, J.T., Smid, J., Hsiau, S.S., Wang, C.Y. and Chou, C.S., “Stagnant zones in granular moving bed filters for flue gas cleanup,” Filtration and Separation, Vol 35, pp. 529-534, 1998.
[16] Hsiau, S.S., Smid, J., Tsai, F.H., Kuo, J.T. and Chou, C.S., “Placement of flow-corrective elements in a moving granular bed with louvered-walls,” Chemical Engineering and Processing, Vol 43, pp. 1037-1045, 2004.
[17] Johanson, J.R., “The Use of Flow Corrective Inserts in Bins”, Engineering for Industry-Transactions of the ASME,” Vol. 88, pp. 224-230, 1966.
[18] Johanson, J.R., and Kleysteuber, W.K., “Flow Corrective Inserts in Bins,” Chemical Engineering Progress, Vol. 62, pp. 79-83, 1966.
[19] Johanson, J.R., “The Placement of Insert to Correct Flow Problems,” Powder Technology, Vol. 1, pp. 328-333, 1967.
[20] Hsiau, S.S., Smid, J., Wang, C.Y., Kuo, J.T. and Chou, C.S., ”Velocity Profiles of Granules in Moving Bed Filters,” Chemical Engineering Science, Vol. 54, pp. 293-301, 1999.
[21] 古政芳,「流動式顆粒床過濾器阻礙物配置之設計」,
國立中央大學,碩士論文,民國八十九年。
[22] 林政煌,「流動式顆粒床過濾器之流場型態設計與研究」,
國立中央大學,碩士論文,民國九十三年。
[23] 高偉智,「流動式顆粒床過濾器之流動校正單元設計與分析究」,
國立中央大學,碩士論文,民國九十四年。
[24] 陳一順,「流動式顆粒床過濾器三維流場觀察與冷性能測試」,
國立中央大學,碩士論文,民國九十年。
[25] 馬家駒,「流動式顆粒床過濾器冷性能測試」,
國立中央大學,碩士論文,民國九十一年。
[26] 賴信璋,「流動式顆粒床過濾器過濾機制研究」,
國立中央大學,碩士論文,民國九十二年。
[27] 蔡信安,「流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究」,國立中央大學,碩士論文,民國九十五年。
[28] 許嘉仁,「移動式顆粒床過濾器進風口氣體流場行為與過濾性能之研究」,
國立中央大學,碩士論文,民國一OO年。
[29] 張益綸,「顆粒床過濾連續化整合系統開發研究」,
國立中央大學,碩士論文,民國一O二年。
[30] 許展瑞,「顆粒床整合系統最適化設計與連續過濾驗證之研究」,
國立中央大學,碩士論文,民國一O四年。
[31] 張立群,「移動式顆粒床過濾器應用於中高溫除塵及除焦油」,
國立中央大學,碩士論文,民國一O七年
[32] Peukert, W. and Loffler, F., “Influence of temperature on particle separation
in granular bed filters,” Powder Technology, Vol 68, pp. 263-270, 1991.
[33] Chen, Y. S., Chyou, Y. P. and Li, S. C., “Hot gas clean-up technology of dust particulates with a moving granular bed filter,” Applied Thermal Engineering, Vol 74, pp. 146-155, 2014.
[34] Paethanom, A., Nakahara, S., Kobayashi, M., Prawisudha, P., Yoshikawa, K., ”Performance of tar removal by absorption and adsorption for biomass gasification.,” Fuel Processing Technology, Vol 104, pp. 144–154, 2012.
[35] Good, J., Ventress, L., Knoef, H., Zielke, U., Lyck Hansen, P., W. van de Kamp, P. de Wild, Coda, B., S. van Paasen, Kiel, J., Sjöström, K., Liliedahl, T., Unger, Ch., Neeft, J., Suomalainen, M. and Simell, P., “Sampling and analysis of tar and particles in biomass producer gases-Technical Report,” CEN BT/TF 143, July 2005.
[36] Fagbemi, L., Khezami, L. and Capart, R., “Pyrolysis products from different biomasses: application to the thermal cracking of tar,” Applied Energy, Vol 69, pp. 293-306, 2001.
[37] Devi L, Ptasinski KJ, Janssen FJJG. “Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar,” Fuel Process Technology, Vol 86, pp. 707-730, 2005.
[38] Jess, A., “Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels,” Fuel Vol 75, pp. 1441-1448, 1996.
[39] Boerrigter, H., S.V.B. van Paasen, P.C.A. Bergman, J.W. Könemann, R. Emmen and A. Wijnands, “OLGA” TAR REMOVAL TECHNOLOGY, ECN, 2005.
[40] Alberto, G.G., Javier, S.P., Antonio, S.V. and Domingo, S., “Moving bed syngas conditioning: Modelling,” Applied Thermal Engineering, Vol 62, pp. 809-822, 2014.
[41] ECN: “Thersites the ECN tar dew point site”
http://www.thersites.nl/completemodel.aspx
[42] Morgalla, M., Lin, L., Strand, M., “Decomposition of benzene using char aerosol particles dispersed in a high-temperature filter,” Energy, Vol 118, pp. 1345-1352, 2017.
[43] 馬勝銘,「循環式顆粒床過濾器過濾性能研究」,國立中央大學,
碩士論文,民國九十三年。
[44] Themson, G., “The antoine equation for vapor-pressure data,” Chemical Reviews, Vol 38, pp.1-39, 1946.
[45] Darcy, H., “Les Fontaines Publiques de la Ville de Dijon,” Dalmont, Paris, 1856.
[46] Chen, J., Akiyama, T., Nogami, H. and Yagi, J. I., “Behavior of powders in a packed bed with lateral inlets,” ISIJ International, 34, 133-139, 1994.
[47] Shinohara, K. and Golman, B., “Air pressure drop across a particle moving bed in a 155three-dimensional cold model of a blast furnace,” Advanced Powder Technol., 16(4), 387-397, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔