(3.238.88.35) 您好!臺灣時間:2021/04/11 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭光志
研究生(外文):Guang-Jhih Jheng
論文名稱:固態氧化物燃料電池堆熱應力與變形受潛變機制影響之分析
論文名稱(外文):Creep Effect on Stress and Strain Distributions in a Solid Oxide Fuel Cell Stack
指導教授:林志光林志光引用關係
指導教授(外文):Chih-Kuang Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:109
中文關鍵詞:固態氧化物燃料電池熱應力分析潛變
外文關鍵詞:solid oxide fuel cellthermal stress analysiscreep
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究以一款平板式SOFC系統電池堆為研究對象,利用有限元素法,進行熱應力與結構變形的數值模擬分析。為了符合SOFC電池堆的實際運作狀況,本研究將潛變機制在高溫穩態運轉階段對組件結構應力及應變分佈的影響納入考量,包含將金屬連接板、玻璃陶瓷密封膠及二者接合件之各項高溫機械性質與潛變性質,融入所建構之有限元素模型中,以求得在高溫穩態運轉階段,SOFC電池堆各組件熱應力與應變分佈隨時間變化的趨勢,藉此評估SOFC電池堆結構強度的穩定性及耐久壽命。
由模擬結果得知,本研究中所使用的平板式SOFC電池堆,其電池片、鎳網、金屬連接板在各階段的最大等效應力皆小於該材料可承受的臨界應力;而玻璃陶瓷密封膠在完成組裝階段及電池停機階段的最大等效應力在其邊角處皆大於臨界應力。在長時間運作的高溫潛變機制作用下,所有元件的等效應力皆隨高溫運轉時間愈長而有下降的趨勢,而應變則變化不大,顯示有應力鬆弛的現象。此外,金屬連接板與玻璃陶瓷密封膠在邊角處介面上的最大正向應力值與最大剪應力值都會超過可承受的介面臨界應力,有可能於此處產生密封膠的剝離失效。
本研究也探討平板式SOFC電池堆在模擬步驟與其他元件不變的情況下,將原先使用玻璃陶瓷密封膠的地方改由金屬硬銲密封取代,進行結構熱應力分析。結果顯示,與原先使用玻璃陶瓷密封膠時的各元件應力相比, 電池片與金屬連接板的最大等效應力在使用硬銲合金密封時於完成組裝階段及電池停機階段分別產生了50%與100%的應力提升,主要的原因來自於硬銲合金與相鄰元件的熱膨脹係數不匹配的程度比玻璃陶瓷密封膠來得大。
The purpose of this study is to characterize thermal stress distribution in a planar solid oxide fuel cell (pSOFC) stack. A 3-D finite element model for a multiple-cell pSOFC stack is constructed to solve the thermal stress distribution at different stages including after-assembly, start-up, steady operation, and shutdown. The effect of creep mechanism on the variation of stress/strain distribution is taken into account by applying to the finite element model the previously obtained creep properties of the given component materials. Combing the numerical results with mechanical strength of relevant materials, assessment for structural integrity of the given pSOFC stack is also conducted in the present study.
Simulation results indicate the maximum equivalent stress in cell assembly, nickel mesh, and interconnect/frame at each stage of the pSOFC operation conditions is smaller than the critical value. However, the maximum equivalent stress in glass-ceramic sealant at the corners of the bonding region is greater than the critical one at after-assembly and shutdown stages. During long-term operation, the equivalent stress of all components decreases with an increase in operating time, while the strain barely changes. It indicates that stress relaxation takes place in the pSOFC stack at high-temperature operation stage due to a constant-strain creep mechanism. In addition, the maximum interfacial normal and shear stresses on the edge or corner of the interface between interconnect/frame and glass-ceramic sealant exceed the critical value such that debonding may occur at the interface.
Structural thermal stress analysis is also carried out for the case that the glass-ceramic sealant in the given pSOFC stack is replaced by braze alloy under a condition that the simulation procedure and other components are unchanged. The results show that the maximum equivalent stress in cell assembly and interconnect/frame is respectively increased to an extent of 50% and 100% at after-assembly and shutdown stages when using braze alloy in replacement of glass-ceramic sealant. The main reason for the significant stress increase is that the braze alloy has a larger mismatch of coefficient of thermal expansion with adjacent components.
1. INTRODUCTION 1
1.1. Solid Oxide Fuel Cell 1
1.2. Components of SOFC 4
1.3. Thermal Stress Analysis 7
1.4. Purpose and Scope 11
2. NUMERICAL SIMULATION 13
2.1. Finite Element Model 13
2.2. Material Properties 14
2.3. Analysis Procedure and Temperature Profiles 18
2.4. Failure Criteria 21
3. RESULTS AND DISCUSSION 23
3.1. Stress in Each Component 23
3.1.1. After-assembly stage 23
3.1.2. Operating stage (start-up) 29
3.1.3. Operating stage (1,000 h, 10,000 h, and 40,000 h) 30
3.1.4. Shutdown stage 34
3.2. Strain in Each Component 35
3.2.1. After-assembly stage 51
3.2.2. Operating stage (start-up) 51
3.2.3. Operating stage (1,000 h, 10,000 h, and 40,000 h) 52
3.2.4. Shutdown stage 53
3.3. Stress at Interfaces 54
3.4. Structural Analysis for Braze Sealing 73
3.4.1. FEM model and material properties 73
3.4.2. Stress in each component 74
4. CONCLUSIONS 84
REFERENCES 86
REFERENCES
1. Z. J. HUANG, Fuel Cell, Chuan Hwa Book Co., Taipei, 2003.
2. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, pp. 85-160, 2016.
3. S. C. Singhal, “Solid Oxide Fuel Cells: An Overview,” Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, Vol. 49, pp. 478-479, 2004.
4. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
5. S. P. S. Shaikh, A. Muchtar, and M. R. Somalu, “A Review on the Selection of Anode Materials for Solid-Oxide Fuel Cells,” Renewable and Sustainable Energy Reviews, Vol. 51, pp. 1-8, 2015.
6. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, pp. 228-239, 2003.
7. C. Sun, R. Hui, and J. Roller, “Cathode Materials for Solid Oxide Fuel Cells: a Review,” Journal of Solid State Electrochemistry, Vol. 14, pp. 1125-1144, 2010.
8. M. Biswas and K. C. Sadanala, “Electrolyte Materials for Solid Oxide Fuel Cell,” Journal of Powder Metallurgy and Mining, Vol. 2, pp. 1-6, 2013.
9. J. Wu and X. Liu, “Recent Development of SOFC Metallic Interconnect,” Journal of Materials Science and Technology, Vol. 26, pp. 293-305, 2010.
10. S. Ghosh, A. D. Sharma, P. Kundu, and R. N. Basu, “Glass-based Sealants for Application in Planar Solid Oxide Fuel Cell Stack,” Indian Ceramic Society, Vol. 67, pp. 161-182, 2008.
11. Y. Wang, W. Jiang, Y. Luo, Y. Zhang, and S.-T. Tu, “Evolution of Thermal Stress and Failure Probability During Reduction and Re-oxidation of Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 371, pp. 65-76, 2017.
12. K. P. Kim, K. Bae, K. H. Kim, and J. H. Shim, “Reduction of Residual Thermal Stress on Anode-supported SOFCs Using Porous Aid Layers,” International Journal of Precision Engineering and Manufacturing, Vol. 13, pp. 2149-2154, 2012.
13. L. Liu, G.-Y. Kim, and A. Chandra, “Modeling of Thermal Stresses and Lifetime Prediction of Planar Solid Oxide Fuel Cell under Thermal Cycling Conditions,” Journal of Power Sources, Vol. 195, pp. 2310-2318, 2010.
14. L.-K. Chiang, H.-C. Liu, Y.-H. Shiu, C.-H. Lee, and R.-Y. Lee, “Thermo-Electrochemical and Thermal Stress Analysis for an Anode-Supported SOFC Cell,” Renewable Energy, Vol. 33, pp. 2580-2588, 2008.
15. M. Xu, T. S. Li, M. Yang, M. Andersson, I. Fransson, T. Larsson, and B. Sundén, “Modeling of an Anode Supported Solid Oxide Fuel Cell Focusing on Thermal Stresses,” International Journal of Hydrogen Energy, Vol. 41, pp. 14927-14940, 2016.
16. J. Wei and J. Malzbender, “Steady State Creep of Ni-8YSZ Substrates for Application in Solid Oxide Fuel and Electrolysis Cells,” Journal of Power Sources, Vol. 360, pp. 1-10, 2017.
17. H. L. Frandsen, M. Makowska, F. Greco, C. Chatzichristodoulou, D. W. Ni, D. J. Curran, M. Strobl, L. T. Kuhn, and P. V. Hendriksen, “Accelerated Creep in Solid Oxide Fuel Cell Anode Supports During Reduction,” Journal of Power Sources, Vol. 323, pp. 78-89, 2016.
18. D. N. Boccaccini, H. L. Frandsen, B. R. Sudireddy, P. Blennow, Å. H. Persson, K. Kwok, and P. V. Hendriksen, “Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21569-21580, 2014.
19. Y.-T. Chiu, C.-K. Lin, and J.-C. Wu, “High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 2005-2012, 2011.
20. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
21. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
22. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect,” Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
23. X. Fang and Z. Lin, “Numerical Study on the Mechanical Stress and Mechanical Failure of Planar Solid Oxide Fuel Cell,” Applied Energy, Vol. 229, pp. 63-68, 2018.
24. A. Nakajo, J. Van herle, and D. Favrat, “Sensitivity of Stresses and Failure Mechanisms in SOFCs to the Mechanical Properties and Geometry of the Constitutive Layers,” Fuel Cells, Vol. 11, pp. 537-552, 2011.
25. R. Clague, A. J. Marquis, and N. P. Brandon, “Finite Element and Analytical Stress Analysis of a Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 210, pp. 224-232, 2012.
26. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,” Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
27. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. Van herle, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,” Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
28. W. Jiang, Y.-C. Zhang, W. Y. Zhang, Y. Luo, W. Woo, and S. T. Tu, “Design of Window Frame Thickness for the Bonded Compliant Seal of a Planar Solid Oxide Fuel Cell,” Materials & Design, Vol. 93, pp. 53-62, 2016.
29. Y.-C. Zhang, W. Jiang, S.-T. Tu, and J.-F. Wen, “Simulation of Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 39, pp. 17941-17951, 2014.
30. Y.-C. Zhang, W. Jiang, S.-T. Tu, J.-F. Wen, and W. Woo, “Using Short-Time Creep Relaxation Effect to Decrease the Residual Stress in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell – a Finite Element Simulation,” Journal of Power Sources, Vol. 255, pp. 108-115, 2014.
31. T. T. Molla, K. Kwok, and H. L. Frandsen, “Efficient Modeling of Metallic Interconnects for Thermo-Mechanical Simulation of SOFC Stacks: Homogenized Behaviors and Effect of Contact,” International Journal of Hydrogen Energy, Vol. 41, pp. 6433-6444, 2016.
32. Y. Luo, W. Jiang, Q. Zhang, W. Y. Zhang, and M. Hao, “Effects of Anode Porosity on Thermal Stress and Failure Probability of Planar Solid Oxide Fuel Cell with Bonded Compliant Seal,” International Journal of Hydrogen Energy, Vol. 41, pp. 7464-7474, 2016.
33. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Chen, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
34. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
35. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
36. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
37. K. Anam and C.-K. Lin, “Thermal Stress Intensity Factors of Crack in Solid Oxide Fuel Cells,” Applied Mechanics and Materials, Vol. 493, pp. 331-336, 2014.
38. C.-K. Lin, W.-H. Shiu, S.-H. Wu, and R.-Y. Lee, “Simulation of Interfacial Cracking of the Joint Between Glass-Ceramic Sealant and Metallic Interconnect in a Planar Solid Oxide Fuel Cell Stack,” ECS Transactions, Vol. 68, pp. 2981-2990, 2015.
39. C. Wang, J. J. Yang, W. Huang, T. Zhang, D. Yan, J. Pu, B. Chi, and J. Li, “Numerical Simulation and Analysis of Thermal Stress Distributions for a Planar Solid Oxide Fuel Cell Stack with External Manifold Structure,” International Journal of Hydrogen Energy, Vol. 43, pp. 20900-20910, 2018.
40. A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, “Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 145, pp. 463-469, 2005.
41. J. Johnson and J. Qu, “Three‐Dimensional Numerical Simulation Tools for Fracture Analysis in Planar Solid Oxide Fuel Cells (SOFCs),” in Advances in Solid Oxide Fuel Cells II, edited by N. P. Bansal, A. Wereszczak, and E. L. Curzio, Wiley, USA, pp. 393-405, 2008.
42. K. S. Weil and B. J. Koeppel, “Comparative Finite Element Analysis of the Stress–Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs,” Journal of Power Sources, Vol. 180, pp. 343-353, 2008.
43. K. S. Weil and B. J. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.
44. T. Zhang, Q. Zhu, and Z. Xie, “Modeling of Cracking of the Glass-Based Seals for Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 188, pp. 177-183, 2009.
45. A. Nakajo, Z. Wuillemin, J. Van herle, and D. Favrat, “Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells,” Journal of Power Sources, Vol. 193, pp. 203-215, 2009.
46. A. Nakajo, Z. Wuillemin, J. Van herle, and D. Favrat, “Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling,” Journal of Power Sources, Vol. 193, pp. 216-226, 2009.
47. T. L. Jiang and M.-H. Chen, “Thermal-Stress Analyses of an Operating Planar Solid Oxide Fuel Cell with the Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 34, pp. 8223-8234, 2009.
48. W. Jiang, S. T. Tu, G. C. Li, and J. M. Gong, “Residual Stress and Plastic Strain Analysis in the Brazed Joint of Bonded Compliant Seal Design in Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 195, pp. 3513-3522, 2010.
49. G. Anandakumar, N. Li, A. Verma, P. Singh, and J.-H. Kim, “Thermal Stress and Probability of Failure Analyses of Functionally Graded Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 195, pp. 6659-6670, 2010.
50. L.-K. Chiang, H.-C. Liu, Y.-H. Shiu, C.-H. Lee, and R.-Y. Lee, “Thermal Stress and Thermo-Electrochemical Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell: Effects of Anode Porosity,” Journal of Power Sources, Vol. 195, pp. 1895-1904, 2010.
51. W. Jiang, Y. C. Zhang, W. Woo, and S. T. Tu, “Effect of Al2O3 Film on Thermal Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 10616-10624, 2011.
52. L. Blum, S. M. Groß, J. Malzbender, U. Pabst, M. Peksen, R. Peters, and I. C. Vinke, “Investigation of Solid Oxide Fuel Cell Sealing Behavior under Stack Relevant Conditions at Forschungszentrum Jülich,” Journal of Power Sources, Vol. 196, pp. 7175-7181, 2011.
53. W.-C. Jiang, Y.-C. Zhang, W. Woo, and S. T. Tu, “Three-Dimensional Simulation to Study the Influence of Foil Thickness on Residual Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 209, pp. 65-71, 2012.
54. S. Vaidya and J.-H. Kim, “Finite Element Thermal Stress Analysis of Solid Oxide Fuel Cell Cathode Microstructures,” Journal of Power Sources, Vol. 225, pp. 269-276, 2013.
55. R. Clague, A. J. Marquis, and N. P. Brandon, “Time Independent and Time Dependent Probability of Failure of Solid Oxide Fuel Cells by Stress Analysis and the Weibull Method,” Journal of Power Sources, Vol. 221, pp. 290-299, 2013.
56. S.-S. Wei, T.-H. Wang, and J.-S. Wu, “Numerical Modeling of Interconnect Flow Channel Design and Thermal Stress Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell Stack,” Energy, Vol. 69, pp. 553-561, 2014.
57. J. B. Robinson, L. D. Brown, R. Jervis, O. O. Taiwo, T. M. M. Heenan, J. Millichamp, T. J. Mason, T. P. Neville, R. Clague, D. S. Eastwood, C. Reinhard, P. D. Lee, D. J. L. Brett, and P. R. Shearing, “Investigating the Effect of Thermal Gradients on Stress in Solid Oxide Fuel Cell Anodes Using Combined Synchrotron Radiation and Thermal Imaging,” Journal of Power Sources, Vol. 288, pp. 473-481, 2015.
58. B. Charlas, H. L. Frandsen, K. Brodersen, P. V. Henriksen, and M. Chen, “Residual Stresses and Strength of Multilayer Tape Cast Solid Oxide Fuel and Electrolysis Half-Cells,” Journal of Power Sources, Vol. 288, pp. 243-252, 2015.
59. T. Choudhary and Sanjay, “Computational Analysis of IR-SOFC: Transient, Thermal Stress, Carbon Deposition and Flow Dependency,” International Journal of Hydrogen Energy, Vol. 41, pp. 10212-10227, 2016.
60. L. Blum, “An Analysis of Contact Problems in Solid Oxide Fuel Cell Stacks Arising from Differences in Thermal Expansion Coefficients,” Electrochimica Acta, Vol. 223, pp. 100-108, 2017.
61. M. Saied, K. Ahmed, M. Ahmed, M. Nemat-Alla, and M. El-Sebaie, “Investigations of Solid Oxide Fuel Cells with Functionally Graded Electrodes for High Performance and Safe Thermal Stress,” International Journal of Hydrogen Energy, Vol. 42, pp. 15887-15902, 2017.
62. J. Laurencin, G. Delette, F. U. Viretta, and S. D. Iorio, “Creep Behaviour of Porous SOFC Electrodes Measurement and Application to Ni-8YSZ Cermets,” Journal of the European Ceramic Society, Vol. 31, pp. 1741-1752, 2011.
63. B. Sun, R. A. Rudkin, and A. Atkinson, “Effect of Thermal Cycling on Residual Stress and Curvature of Anode‐Supported SOFCs,” Fuel Cells, Vol. 9, pp. 805-813, 2009.
64. https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_H.pdf. (accessed on March 11, 2019).
65. Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, pp. 437-441, 1990.
66. W. Koster, “The Temperature Dependence of the Elasticity Modulus of Pure Metals,” Zeitschrift fur Metallkunde, Vol. 39, pp. 1-9, 1948.
67. P. Hidnert, “Thermal Expansion of Some Nickel Alloys,” Journal of Research of the National Bureau of Standards, Vol. 58, pp. 89-92, 1957.
68. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
69. C.-K. Liu, R.-Y. Lee, K.-C. Tsai, S.-H. Wu, and K.-F. Lin, “Characterization and Performance of a High-temperature Glass Sealant for Solid Oxide Fuel Cell,” Ceramic Engineering and Science Proceedings, Vol. 35, pp. 65-75, 2015.
70. N. E. Dowling, Mechanical Behavior of Materials, 3rd Ed., Pearson Education, Inc., New Jersey, USA, pp. 813-816, 2007.
71. J. Weertman and P. Shahinian, “Creep of Polycrystalline Nickel,” Journal of Metals, Vol. 8, p. 1224, 1956.
72. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
73. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Failure Probability of Solid Oxide Fuel Cells,” in Advances in Solid Oxide Fuel Cells, edited by N. P. Bansal, D. Zhu, and W. M. Kriven, Wiley, USA, pp. 293-298, 2005.
74. C.-K. Lin, J.-Y. Chen, J.-W. Tian, L.-K. Chiang, and S.-H. Wu, “Joint Strength of a Solid Oxide Fuel Cell Glass–Ceramic Sealant with Metallic Interconnect,” Journal of Power Sources, Vol. 205, pp. 307-317, 2012.
75. A. Kaletsch, A. Bezold, E. M. Pfaff, and C. Broeckmann, “Effects of copper oxide content in AgCuO braze alloy on microstructure and mechanical properties of reactive-air-brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),” Journal of Ceramic Science and Technology, Vol. 3, pp. 95-104, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔