跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇玟瑄
研究生(外文):Su-Wen Hsuan
論文名稱:有效披覆黑磷烯的穩定性之研究
論文名稱(外文):The investigation of effective passivation on black phosphorus
指導教授:蘇清源
指導教授(外文):Su-Ching Yuan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:黑磷烯劣化長期穩定性披覆
外文關鍵詞:Black phosphorusdegradationlong-term stabilitypassivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黑磷烯是一種新穎二維的材料,為褶皺的六角型結構,其如同石墨烯的片層與片層之間以凡得瓦力鍵結。在2014年首次以機械剝離法由黑磷塊材中取得,命名為黑磷烯。由於石墨烯沒有直接能隙,而二硫化鉬雖有直接能隙~1.2 eV -1.8 eV,但是展現低的載子遷移率。然而,黑磷烯具有隨著厚度可調控的直接能隙(從多層~0.3 eV至單層~2.0 eV)。因此,應用於背閘極式電晶體量測其電流開關比(on-off ratio))達到104-105,且其電洞遷移率(hold mobility)可達到1000 cm2V-1s-1,這些優異的電子特性使其可作為電子、光電以及邏輯元件等所需應用的材料。然而,此二維材料在一般環境下會與水氧反應而劣化,這將導致其本質的電傳輸性質劣化而無法實際應用。
本研究利用氟化高分子自組裝膜、氟化物旋塗以及石墨烯轉印等技術,探討不同材料披覆黑磷對其時效性之影響。透過拉曼光譜(Raman)分析氟化高分子Nafion之披覆對黑磷有160天之長期穩定的保護效果,可使黑磷表面維持本質態,減緩黑磷在空氣中的劣化,此外,在原子力顯微鏡(atomic force microscopic, AFM)分析表面形貌發現Nafion對黑磷有表面清潔效果。在電性量測中,Nafion披覆改質的黑磷電性提升,透過X-射線光電子光譜(X-ray photoelectron spectroscope, XPS)分析黑磷與Nafion的改質。然而,在探討電傳輸特性時,量測元件過程中發現Nafion仍存在黑磷快速劣化的問題,但再次利用去除Nafion之方式對黑磷表面改質,將能改善黑磷在電性分析時的穩定性,發現其電流開關比達104,且電洞遷移率達117.38 cm2V-1S-1。本研究將能提供一種有效披覆黑磷的保護方法,並維持其優異的電傳輸特性。
Black phosphorous (BP) also known as phosphorene is a novel two-dimensional material with a hexagonal honeycomb structure, similar to graphene where the lamellar layers are bonded to each other by Van der Waals forces. In 2014, it was obtained from the bulk black phosphorus by mechanical exfoliation method. While there is no band gap in graphene and a direct bandgap of 1.2 eV -1.8 eV in monolayer molybdenum disulfide (MoS2), the BP on the other hand, has a thickness-dependent direct bandgap ( 0.3 eV for multilayers to 2.0 eV for monolayer). BP can be efficiently applied to electronic components as it has a high on-off ratio of 104-105, and carrier mobility of ~1000 cm2V-1S-1, both of which are excellent features necessitated in logic devices. However, BP has the disadvantage of being easily oxidized in ambient conditions, resulting in the deterioration of its intrinsic electrical transport properties.
In the present study, several techniques have been explored using various passivated materials to protect BP, such as fluorinated polymer self-assembly, fluoride spin coating, and transferring of graphene to BP. Raman analysis showed that the Nafion solution can provide a long-term stability protection to BP, passivate the BP surface in an essential state, and reduce environmental degradation up to 160 days. In addition, atomic force microscopy (AFM) image shows that the Nafion solution can also remove the BP surface impurities. We also explored the chemical modification of Nafion solution on BP and its effect in electrical properties. The Nafion coating is found to enhance the electrical property of BP (on-off ratio) which may be due to the strong interaction between the BP and Nafion forming a P-F bond as seen from the X-ray Photoelectron Spectroscopy (XPS). However, when measuring electrical properties of the Nafion coated on BP, the BP would still degrade quickly. However, when Nafion was selectively coated on BP surface, it was found that the BP wasn’t only improved stability, but also shown excellent electrical properties, such as on-off ratio of 104 and the hole mobility of 117.38 cm2V-1S-1.
摘要 i
英文摘要 ii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧與研究背景 5
2-1黑磷劣化機制 5
2-2拉曼分析及劣化表徵 8
2-3抑制黑磷劣化之研究 11
2-3-1二維材料封裝披覆 13
2-3-2原子層沉積覆蓋 16
2-3-3氧化保護層 19
2-3-4化學改質 21
2-4研究動機 24
第三章 實驗架構與流程 25
3-1實驗用品與儀器 25
3-1-1實驗用品 25
3-1-2實驗儀器 26
3-2實驗架構 27
3-3實驗流程 27
3-3-1機械剝離法(mechanical exfoliation method) 27
3-3-2披覆黑磷 29
3-3-3黑磷元件的製作 37
3-4材料分析 39
第四章 結果與討論 40
4-1方法一:石墨烯披覆黑磷之時效性分析 40
4-2方法二:氟化石墨烯披覆黑磷之時效性分析 43
4-2方法三:黑磷的自組裝保護結果 45
4-4方法四:Nafion對黑磷披覆的效果 48
4-4-1 Nafion之轉速優化參數 48
4-4-2拉曼光譜分析黑磷時效性 49
4-4-3探討黑磷長期之表面形貌 52
4-4-4元素分析黑磷改質 59
4-4-5元件製作與電性量測 62
4-4-6選擇性披覆黑磷的表面分析 70
第五章 結論 74
第六章 未來工作 75
參考文獻 75
1.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
2.Jayakumar, A., A. Surendranath, and M. Pv, 2D materials for next generation healthcare applications. Int J Pharm, 2018. 551(1-2): p. 309-321.
3.Li, L., et al., Black phosphorus field-effect transistors. Nat Nanotechnol, 2014. 9(5): p. 372-7.
4.Castellanos-Gomez, A., et al., Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014. 1(2).
5.Castellanos-Gomez, A., Black Phosphorus: Narrow Gap, Wide Applications. J Phys Chem Lett, 2015. 6(21): p. 4280-91.
6.Kuriakose, S., et al., Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018. 5(3).
7.Liu, H., et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014. 8(4): p. 4033-41.
8.Woomer, A.H., et al., Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano, 2015. 9(9): p. 8869-84.
9.Kou, L., C. Chen, and S.C. Smith, Phosphorene: Fabrication, Properties, and Applications. J Phys Chem Lett, 2015. 6(14): p. 2794-805.
10.Mounet, N., et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018. 13(3): p. 246-252.
11.Akinwande, D., N. Petrone, and J. Hone, Two-dimensional flexible nanoelectronics. Nat Commun, 2014. 5: p. 5678.
12.Batmunkh, M., M. Bat-Erdene, and J.G. Shapter, Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications. Adv Mater, 2016. 28(39): p. 8586-8617.
13.Oxygen defects in phosphorene. Phys. Rev. Lett., 2015. 114.
14.Sumeet, W., et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017. 4(1): p. 015025.
15.Zhou, Q., et al., Light-Induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection. Angew Chem Int Ed Engl, 2016. 55(38): p. 11437-41.
16.Favron, A., et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015. 14(8): p. 826-32.
17.He, D., et al., High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. Nano Lett, 2019. 19(1): p. 331-337.
18.Liu, S., et al., Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. Journal of Materials Chemistry C, 2015. 3(42): p. 10974-10980.
19.Lu, W., et al., Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Research, 2014. 7(6): p. 853-859.
20.Kim, J., et al., Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale, 2015. 7(44): p. 18708-15.
21.Wood, J.D., et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014. 14(12): p. 6964-70.
22.Tang, X., et al., Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017: p. 1702739-n/a.
23.Ryder, C.R., et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016. 8: p. 597.
24.Illarionov, Y.Y., et al., Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano, 2016. 10(10): p. 9543-9549.
25.Kim, J.-S., et al., Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports, 2015. 5: p. 8989.
26.Gamage, S., et al., Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology, 2017. 28(26): p. 265201.
27.Chen, X., et al., High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015. 6: p. 7315.
28.Kim, J., et al., Long-term stability study of graphene-passivated black phosphorus under air exposure. Current Applied Physics, 2016. 16(2): p. 165-169.
29.Telesio, F., et al., Hybrid nanocomposites of 2D black phosphorus nanosheets encapsulated in PMMA polymer material: new platforms for advanced device fabrication. Nanotechnology, 2018. 29(29): p. 295601.
30.Edmonds, M.T., et al., Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl Mater Interfaces, 2015. 7(27): p. 14557-62.
31.Yang, S., et al., Thermal annealing of black phosphorus for etching and protection. Applied Surface Science, 2018. 457: p. 773-779.
32.Walia, S., et al., Ambient Protection of Few-Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017. 29(27): p. 1700152-n/a.
33.Zhao, W., et al., Large-Scale, Highly Efficient, and Green Liquid-Exfoliation of Black Phosphorus in Ionic Liquids. ACS Applied Materials & Interfaces, 2015. 7(50): p. 27608-27612.
34.Yue, D., et al., Passivated ambipolar black phosphorus transistors. Nanoscale, 2016. 8(25): p. 12773-9.
35.Wan, B., et al., Enhanced stability of black phosphorus field-effect transistors with SiO(2) passivation. Nanotechnology, 2015. 26(43): p. 435702.
36.Son, Y., et al., A study of bilayer phosphorene stability under MoS2-passivation. 2D Materials, 2017. 4(2).
37.Kim, J.S., et al., Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015. 5: p. 8989.
38.Pei, J., et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nat Commun, 2016. 7: p. 10450.
39.Kwon, H., et al., Ultrathin and Flat Layer Black Phosphorus Fabricated by Reactive Oxygen and Water Rinse. ACS Nano, 2016. 10(9): p. 8723-31.
40.Johns, J.E., et al., Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. J Am Chem Soc, 2013. 135(48): p. 18121-5.
41.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-24.
42.Johns, J.E. and M.C. Hersam, Atomic covalent functionalization of graphene. Acc Chem Res, 2013. 46(1): p. 77-86.
43.Hanlon, D., et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun, 2015. 6: p. 8563.
44.Zou, M., et al., Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018. 39(1).
45.Tang, X., et al., Fluorination-Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots. Adv Sci (Weinh), 2018. 5(9): p. 1800420.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top