|
1.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9. 2.Jayakumar, A., A. Surendranath, and M. Pv, 2D materials for next generation healthcare applications. Int J Pharm, 2018. 551(1-2): p. 309-321. 3.Li, L., et al., Black phosphorus field-effect transistors. Nat Nanotechnol, 2014. 9(5): p. 372-7. 4.Castellanos-Gomez, A., et al., Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014. 1(2). 5.Castellanos-Gomez, A., Black Phosphorus: Narrow Gap, Wide Applications. J Phys Chem Lett, 2015. 6(21): p. 4280-91. 6.Kuriakose, S., et al., Black phosphorus: ambient degradation and strategies for protection. 2D Materials, 2018. 5(3). 7.Liu, H., et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014. 8(4): p. 4033-41. 8.Woomer, A.H., et al., Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano, 2015. 9(9): p. 8869-84. 9.Kou, L., C. Chen, and S.C. Smith, Phosphorene: Fabrication, Properties, and Applications. J Phys Chem Lett, 2015. 6(14): p. 2794-805. 10.Mounet, N., et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018. 13(3): p. 246-252. 11.Akinwande, D., N. Petrone, and J. Hone, Two-dimensional flexible nanoelectronics. Nat Commun, 2014. 5: p. 5678. 12.Batmunkh, M., M. Bat-Erdene, and J.G. Shapter, Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications. Adv Mater, 2016. 28(39): p. 8586-8617. 13.Oxygen defects in phosphorene. Phys. Rev. Lett., 2015. 114. 14.Sumeet, W., et al., Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017. 4(1): p. 015025. 15.Zhou, Q., et al., Light-Induced Ambient Degradation of Few-Layer Black Phosphorus: Mechanism and Protection. Angew Chem Int Ed Engl, 2016. 55(38): p. 11437-41. 16.Favron, A., et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015. 14(8): p. 826-32. 17.He, D., et al., High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. Nano Lett, 2019. 19(1): p. 331-337. 18.Liu, S., et al., Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. Journal of Materials Chemistry C, 2015. 3(42): p. 10974-10980. 19.Lu, W., et al., Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Research, 2014. 7(6): p. 853-859. 20.Kim, J., et al., Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale, 2015. 7(44): p. 18708-15. 21.Wood, J.D., et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014. 14(12): p. 6964-70. 22.Tang, X., et al., Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017: p. 1702739-n/a. 23.Ryder, C.R., et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016. 8: p. 597. 24.Illarionov, Y.Y., et al., Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano, 2016. 10(10): p. 9543-9549. 25.Kim, J.-S., et al., Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports, 2015. 5: p. 8989. 26.Gamage, S., et al., Reliable passivation of black phosphorus by thin hybrid coating. Nanotechnology, 2017. 28(26): p. 265201. 27.Chen, X., et al., High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015. 6: p. 7315. 28.Kim, J., et al., Long-term stability study of graphene-passivated black phosphorus under air exposure. Current Applied Physics, 2016. 16(2): p. 165-169. 29.Telesio, F., et al., Hybrid nanocomposites of 2D black phosphorus nanosheets encapsulated in PMMA polymer material: new platforms for advanced device fabrication. Nanotechnology, 2018. 29(29): p. 295601. 30.Edmonds, M.T., et al., Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Appl Mater Interfaces, 2015. 7(27): p. 14557-62. 31.Yang, S., et al., Thermal annealing of black phosphorus for etching and protection. Applied Surface Science, 2018. 457: p. 773-779. 32.Walia, S., et al., Ambient Protection of Few-Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017. 29(27): p. 1700152-n/a. 33.Zhao, W., et al., Large-Scale, Highly Efficient, and Green Liquid-Exfoliation of Black Phosphorus in Ionic Liquids. ACS Applied Materials & Interfaces, 2015. 7(50): p. 27608-27612. 34.Yue, D., et al., Passivated ambipolar black phosphorus transistors. Nanoscale, 2016. 8(25): p. 12773-9. 35.Wan, B., et al., Enhanced stability of black phosphorus field-effect transistors with SiO(2) passivation. Nanotechnology, 2015. 26(43): p. 435702. 36.Son, Y., et al., A study of bilayer phosphorene stability under MoS2-passivation. 2D Materials, 2017. 4(2). 37.Kim, J.S., et al., Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015. 5: p. 8989. 38.Pei, J., et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nat Commun, 2016. 7: p. 10450. 39.Kwon, H., et al., Ultrathin and Flat Layer Black Phosphorus Fabricated by Reactive Oxygen and Water Rinse. ACS Nano, 2016. 10(9): p. 8723-31. 40.Johns, J.E., et al., Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. J Am Chem Soc, 2013. 135(48): p. 18121-5. 41.Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2010. 2(12): p. 1015-24. 42.Johns, J.E. and M.C. Hersam, Atomic covalent functionalization of graphene. Acc Chem Res, 2013. 46(1): p. 77-86. 43.Hanlon, D., et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun, 2015. 6: p. 8563. 44.Zou, M., et al., Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018. 39(1). 45.Tang, X., et al., Fluorination-Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots. Adv Sci (Weinh), 2018. 5(9): p. 1800420.
|