跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周永芳
研究生(外文):Yung-Fang Chou
論文名稱:遠端螢光粉LED光學效能提升之研究
論文名稱(外文):Study on improving the optical performance of remote phosphor LED
指導教授:陳奇夆
指導教授(外文):Chi-Feng Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:遠端螢光粉光學效能
外文關鍵詞:remote phosphor LED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來基於螢光粉轉換的白光LED由於具有長壽命、高可靠性、環境保護、安全性和多種應用領域等許多優點而在LED市場中佔有相當大的比例。但為了滿足可持續發展的要求,持續提高LED的發光效率至關重要。將螢光粉層與LED晶片分離以抑制光線再吸收的遠端螢光粉封裝結構是提高發光效率的有效方法,本文利用次波長結構的抗反射特性設計並製作具有半橢圓球型結構的PET薄膜貼附於遠端螢光粉LED表面以再次提高元件的光取出效率,實驗結果證實在遠端螢光粉LED表面貼附結構周期為350nm且結構高度為300nm橢圓球型結構的PET薄膜,遠端螢光粉LED之光取出效率可提升11.76%。此外,遠端螢光粉LED在貼附
具有次波長結構的PET薄膜後,遠端螢光粉LED的色座標、色溫和演色性等顏色特性的變異量皆在量測設備的量測誤差範圍內。
在典型的遠端螢光粉白光LED中,螢光粉散射的藍光和螢光粉發射的黃光具有不同的輻射強度分佈。因此,角度顏色分佈變得不均勻,並且會在照射平面中出現不均勻的黃暈現象。本研究中亦經相關實驗證明在遠端螢光粉白光LED中添加TiO2散射粒子提供了一種有效改善的角度色溫均勻性的方法。在螢光粉層中添加重量百分濃度0.2%的TiO2散射粒子和重量百分濃度16.0%的螢光粉經驗證為可獲得較均勻的角度色溫變化與高發光效率和同時維持白光LED整體色溫的最佳參數條件。我們發現與未添加TiO2散射粒子遠端螢光粉LED相比,添加TiO2散射粒子的遠端螢光粉LED的角度色溫均勻性可提高31.82%。在350mA的驅動電流下,相對於未添加散射粒子遠端螢光粉LED,添加TiO2散射粒子的遠端螢光粉LED的光通量增加了8.65%。最後,我們利用實驗驗證將TiO2散射粒子添加到遠端螢光粉白光LED的螢光粉層中並不影響LED元件的可靠度。
Recently, white LEDs based on phosphor conversion have accounted for a considerable proportion of the LED market. To meet the requirements of sustainable development, continual enhancement of LED luminous efficiency is crucial. A remote phosphor package is an efficient method for enhancing luminous efficiency. In this study, the light extraction efficiency of a remote phosphor white LED was enhanced using a hemiellipsoidal antireflection subwavelength structure PET film, which was fabricated to reduce the Fresnel reflection of the LED package surface. The completed antireflection subwavelength structure PET film was integrated on the remote phosphor LED surface through a UV-curing adhesive process. The measured results show that the luminous efficiency was enhanced by approximately 11.76% when the ASS film was used. Moreover, the optical properties of color coordinates, color temperature, and color rendering of remote phosphor LEDs were within the measurement error of the measuring equipment when the ASS film was present.
However, in typical remote phosphor white LEDs, the phosphor-scattered blue light and phosphor-emitted yellow light have different radiant intensity distributions. Therefore, the angular color distribution becomes non-uniform, and a yellow ring phenomenon appears in the illuminating plane.The utility of low-cost and controllable TiO2 diffuser-loaded encapsulation provided an effective method for improving the angular color uniformity of remote phosphor white LEDs. An inert TiO2 diffuser content of 0.2 wt.% and a phosphor content of 16.0 wt.% in the phosphor layer were determined to be the optimum conditions for obtaining low angular CCT variance, high luminous efficiency, and maintaining the CCT of white LEDs, simultaneously. We found that the angular color uniformity could be improved by 31.82% in the TiO2 diffuser-loaded encapsulation remote phosphor LED, compared with the non-diffuser remote phosphor LED. At a driving current of 350 mA, the luminous flux of the TiO2 diffuser-loaded encapsulation remote phosphor LED was increased by 8.65% relative to the non-diffuser remote phosphor LED. Finally, we showed that incorporating the TiO2 diffuser into the phosphor layer of the remote phosphor white LED did not influence the reliability of the LED.
摘要…………………………………………………………………………… i
Abstract……………………………………………………………………… Ii
誌謝…………………………………………………………………………… iv
目錄…………………………………………………………………………… v
圖目錄………………………………………………………………………… vii
表目錄………………………………………………………………………… xiii
符號說明……………………………………………………………………… xiv
第一章 緒論………………………………………………………………. 1
1.1前言……………………………………………………………….. 1
1.2遠端螢光粉白光LED…………………………………………… 3
1.3研究動機與目的………………………………………………… 6
1.4論文大綱………………………………………………………… 7
第二章 基本原理…………………………………………………………. 9
2.1.LED晶片發光原理………………………………………………. 9
2.2.螢光粉發光原理…………………………………………………. 10
2.3白光LED的發光效率…………………………………………… 12
2.4.LED相關物理參數………………………………………………. 13
第三章 相關設備與實驗方法…………………………………………….. 19
3.1遠端螢光粉白光LED封裝材料………………………………… 19
3.2.遠端螢光粉白光LED樣品製作流程…………………………… 24
3.3.LED相關實驗參數量測儀器設備………………………………. 29
第四章 遠端螢光粉白光LED出光效率提升…………………………... 32
4.1文獻回顧………………………………………………………….. 32
4.2.遠端螢光粉型白光LED出光效率提升方法…………………… 40
4.3次波長結構設計與模擬………………………………………….. 42
4.4具次波長結構膜片之遠端螢光粉白光LED製作……………… 46
4.5實驗結果與討論………………………………………………….. 50
第五章 遠端螢光粉白光LED色溫均勻性提升………………………. 55
5.1文獻回顧………………………………………………………….. 55
5.2.遠端螢光粉白光LED中色溫均勻性提升方法………………… 66
5.3遠端螢光粉白光LED光學特性測量…………………………… 68
5.4.實驗結果與討論………………………………………………….. 68
5.5遠端螢光粉白光LED的優化設計……………………………… 72
5.6.TiO2散射粒子封裝遠端螢光粉白光LED的可靠性分析……... 77
5.7小結……………………………………………………………….. 78
第六章 結論……………………………………………………………….. 79
參考文獻……………………………………………………………………… 80
已發表之論文………………………………………………………………… 84
[1]網路資料: http://eportfolio.lib.ksu.edu.tw/~T093000196/wiki/index.ph p/A8%E7 %90 %83%E6%9A%96%E5%8C%96

[2]網路資料: http://www.hko.gov.hk/blog/b5/archives/00000165.htm

[3]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,‖ United States Patent, US 5998925(1999).

[4]網路資料:https://slidesplayer.com/slide/14307292/

[5]網路資料:https://www.ledinside.com.tw/news/20190222-35924.html.

[6]T.F. McNulty ,D. D. Doxsee, J. W. Rose, UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same, United States Patent, Us 6686676 B2(2004).

[7]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, Optimization of mulitichip white solid state lighting source with four or more LEDs, Proc. SPIE4445, 148-155.

[8]Stelur et al., Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,United States Patent, US 6685852 B2(2004).

[9]網路資料:https://lighting.cnledw.com/tech/newsDetail-22127.html

[10] M. Leung, White LED and Remote Phosphor Comparison, Cree, Inc.2014.

[11]A. Zukauskas, Introduction to Solid-State Lighting, John Wiley & Sons, New York, 2002.

[12]E. F. Schubert, Light Emitting Diodes, Cambridge University Press, Cambridge, 2003.

[13]ZHANG, Yang; HAO, Jianhua. Metal-ion doped luminescent thin films for optoelectronic applications. Journal of Materials Chemistry C, 2013, 1.36: 5607-5618.

[14]網路資料: https://scitechvista.nat.gov.tw/c/s2ZY.htm

[15]中華民國光電學會,「LED工程師基礎概念與應用」,五南2012年4月。

[16]網路資料:http://www.twword.com/wiki/%E8%A6%96%E8%A6%8B%E5%87
%BD%E6%95%B8

[17]郭浩中、賴芳儀、郭守義,「LED原理與應用」,五南2009年6月。

[18]網路資料: https://iphone4.tw/forums/showthread.php?t=219450

[19]網路資料: http://www.p-e-china.com/neir.asp?newsid=4019

[20]網路資料: http://www.i-chiun.com.tw/_ch/03_product/02_spec.php?
MainID=1&ID=7&SerID=33

[21]網路資料: http://ac-rc.net/images/data_sheet/ES-CABLV45H.pdf

[22]網路資料: https:// www.intematix.com

[23]網路資料: https://www.nordson.com/en/divisions/efd/contact-us/global- loca
tion-directory

[24]網路資料:https://www.instrumentsystems.tw/%E7%94%A2%E5%93%81%E4%
BB%8B%E7%B4%B9/%E5%85%89%E8%AD%9C%E5%84%80/cas-140ct/

[25]網路資料: http://www.lumenoptimum.com/Products18.htm

[26]網路資料: http://www.trendtop.com.tw/ec99/ushop10124/GoodsDescr.asp?Pr
od_id=A11-003&parent_id=513&category_id=308

[27]SUN, Chun, et al. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots. Applied Physics Letters, 2014, 104.26: 261106.

[28]KIM, Jong Kyu, et al. Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup. Japanese Journal of Applied Physics, 2005, 44.5L: L649.

[29]GENG, Chong, et al. Fabrication of volcano-shaped nano-patterned sapphire substrates using colloidal self-assembly and wet chemical etching. Nanotechnology, 2013, 24.33: 335301.

[30]DONG, Peng, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Applied Physics Letters, 2013, 102.24: 241113.

[31]ZHANG, Yonghui, et al. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography. Applied Physics Letters, 2014, 105.1: 013108.

[32]HSU, Chan-Wei, et al. Optimizing textured structures possessing both optical gradient and diffraction properties to increase the extraction efficiency of light-emitting diodes. Photonics and Nanostructures-Fundamentals and Applications, 2012, 10.4: 523-533.

[33]LUO, Hong, et al. Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor. Applied Physics Letters, 2006, 89.4: 041125.

[34]LUO, Hong, et al. Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied physics letters, 2005, 86.24: 243505.

[35]TING, Chia-Jen, et al. Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process. Journal of Micromechanics and Microengineering, 2008, 18.7: 075001.

[36]TING, Chia-Jen; CHEN, Chi-Feng; HSU, Chin-Ju. Subwavelength structured surfaces with a broadband antireflection function analyzed by using a finite difference time domain method. Optik, 2010, 121.12: 1069-1074.

[37]TING, Chia-Jen; CHEN, Chi-Feng; CHOU, C. P. Subwavelength structures for broadband antireflection application. Optics Communications, 2009, 282.3: 434-438.

[38]陳奇夆,固態照明元件製程技術整合與光學效能驗證期末計畫執行工作報告」,2010年12月。

[39]E. Hecht, Optics, 4th ed., Addison Wesley, 2002.

[40]HUANG, Kuan-Chieh; LAI, Teng-Hsien; CHEN, Cheng-Yen. Improved CCT uniformity of white LED using remote phosphor with patterned sapphire substrate. Applied optics, 2013, 52.30: 7376-7381.

[41]CHEN, Hsin-Chu, et al. Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs. Nanotechnology, 2012, 23.26: 265201.

[42]KUO, Hao-Chung, et al. Patterned structure of remote phosphor for phosphor-converted white LEDs. Optics express, 2011, 19.104: A930-A936.

[43]DING, Xinrui, et al. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods. Optics express, 2015, 23.3: A180-A191.

[44]YANG, Liang, et al. Effects of melamine formaldehyde resin and CaCO 3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs. Applied optics, 2013, 52.22: 5539-5544.

[45]LAI, Min-Feng, et al. Scattering effect of SiO2 particles on correlated color temperature uniformity of multi-chip white light LEDs. Journal of the Chinese Institute of Engineers, 2016, 39.4: 468-472.
[46]MINH, Tran Hoang Quang, et al. Improving color uniformity and color rending index of remote-phosphor packaging white LEDs by co-doping SiO2 and Sr2Si5N8: Eu2+ particles. Materials Science-Poland, 2018, 36.3: 370-374.

[47]RONG, Q. I. Particle Size and Distribution of Titanium Dioxide Produced by Chloride Procedure [J]. Modern Paint & Finishing, 2007, 5.

[48]van de Hulst, H.C. Light Scattering by Small Particles; Dover, New York, NY, USA, 1981.

[49]ALLEN, Steven C.; STECKL, Andrew J. A nearly ideal phosphor-converted white light-emitting diode. Applied Physics Letters, 2008, 92.14: 128.

[50]LI, Yuan-Qing, et al. Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles. Chemistry of Materials, 2008, 20.8: 2637-2643.

[51]YANG, Yang, et al. Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. The Journal of Physical Chemistry C, 2008, 112.28: 10553-10558.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top