(3.227.235.183) 您好!臺灣時間:2021/04/13 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:雷修懿
研究生(外文):LEI XIU YI
論文名稱:利用有限差分法探討水力 -力學雙向耦合效應對岩盤隧道周圍地下水流之影響
論文名稱(外文):Hydraulic-mechanical coupling effect on groundwater flow around rock tunnel using finite difference method
指導教授:董家鈞董家鈞引用關係
指導教授(外文):DONG JIA JYUN
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:水力 -力學雙向耦合岩盤隧道水力傳導係數剪脹
外文關鍵詞:Hydro-mechanical couplingrock masstunnelhydraulic conductivityshear dilatancy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
放射性廢棄物隧道處置的議題中,地下水於隧道壁面周圍之流動行為與流量為安全評估之重要資訊。過去的研究發現不連續面位態分布及應力的異向性會使裂隙岩體的水力傳導係數產生異向性,同時也發現裂隙力學行為中之剪脹對於隧道周圍流場的分布是不可忽略之要素,前人已透過單向耦合方法針對上述之課題進行研究,但僅單向的考慮應力對滲流場之影響。本研究將進一步探討滲流場-應力場之雙向耦合對隧道周圍流場的影響,以JRC-JCS模式計算裂隙受力產生正向閉合與剪脹之行為,並以Oda擬連續體模式計算隧道周圍水力傳導係數空間分布,再以有限差分法配合局部加密之網格得到隧道周圍的流場以及孔隙水壓,並在考慮孔隙水壓的情況下計算隧道周圍之有效應力場,疊代計算至收斂以表示滲流場與應力場間的互制作用。本研究使用之模型建立於地下650公尺深處,在考慮不同的邊界應力與裂隙分佈之異向性下,結果表示雙向耦合方法之隧道入流量相較單向耦合方法的結果約增加20%,並且於不同異向性參數下,雙向耦合方法下之剪脹區域與剪脹貢獻程度與單向耦合方法有顯著差異,因此隧道周圍流場分析應考慮水力-力學耦合效應。另一方面網格局部加密下之計算結果相較於未加密之結果,能有效反應水力傳導係數驟降之影響。
關鍵詞:水力-力學雙向耦合、岩盤隧道、水力傳導係數、剪脹
For radioactive waste disposal tunnels, the groundwater flow around the tunnel wall is an important issue for safety assessment. Previous study found that the distribution of discontinuous orientation and the anisotropy of stress can induce anisotropic hydraulic conductivity of rock masses. It is also found that the dilatancy in the mechanical behavior of fractures is not negligible for evaluating the groundwater flow around the tunnel. In this study, we will further investigate the influence of the hydro-mechanical coupling on the groundwater flow field around the tunnel. The JRC-JCS mode is used to calculate the behavior of the normal closure and the dilatancy of the fracture, and the spatial distribution of hydraulic conductivity around the tunnel is calculated by the Oda model. The finite difference method was used to caculate the flow field and pore water pressure around the tunnel. The density of the grids near the tunnel was increased. The effective stress field around the tunnel is calculated considering the pore water pressure, and iteratively calculates to converge to indicate the interaction between the flow field and the stress field. The model used in this study was established at a depth of 650 meters underground. Considering the different boundary stress and the anisotropy of the fracture distribution. The results show that the tunnel inflow of the two-way coupling method is about 20% higher than that of the one-way coupling method. Under different anisotropy parameters, the dilating area and the dilatancy contribution under the two-way coupling method are significantly different from the one-way coupling method. Therefore, the hydro-mechanical coupling effect should be considered in the flow field analysis around the tunnel. The calculation result under the increasing density of the grid can effectively reflect the influence of the sudden drop of the hydraulic conductivity compared with the result of the original grid size.

Keywords: Hydro-mechanical coupling, rock mass, tunnel, hydraulic conductivity, shear dilatancy
摘要 i
Abstract . ii
致謝 .. iv
第一章、 前言 .. 1
1.1 裂隙岩體滲透特性 . 1
第二章、 研究方法 .. 4
2.1 水力-力學雙向耦合模式 ... 4
2.2 座標系統與隧道模型 . 7
2.3 數值模型網格加密 . 8
2.4 裂隙岩體滲透特性計算與參數 . 9
2.4.1 隧道開挖導致隧道周圍應力場改變-彈性解 . 9
2.4.2 應力與裂隙內寬-JRC-JCS 模式 12
2.4.3 裂隙岩體滲透係數計算 ... 17
第三章、 流場分析有限差分數值模型與驗證 20
3.1 有限差分法概述 ... 20
3.2 有限差分式推導 ... 21
3.3 有限差分法求解滲流場 ... 23
3.3.1 控制方程式 23
3.3.2 邊界條件與模型設定 25
3.3.3 局部加密網格配置 27
3.3.4 求解聯立方程組 29
3.3.5 流速與入流量 32
3.4 與解析解之比較 ... 32
3.5 模型邊界效應與加密範圍 ... 37
第四章、 結果與討論 41
4.1 網格加密對流場計算之影響 ... 41
4.2 水力-力學耦合效應之影響 . 46
4.3 先天裂隙分佈異向性之影響 ... 57
4.4 應力異向性之影響 ... 68
4.5 同時考慮先天異相性與應力異向性 ... 78
4.6 考慮位置水頭之雙向耦合分析 ... 84
第五章、 結論與建議 89
5.1 結論 ... 89
5.2 建議 ... 90
參考文獻 . 93
1. 鄭允嘉,「節理岩體水力傳導係數之先天異向性與應力引致異向性」,國立中央大學應用地質研究所,碩士論文,民國九十五年。
2. 江誌偉,「裂隙岩體滲流離散模式之研究」,國立台灣大學土木工程學研究所,碩士論文,民國九十七年。
3. 楊卓翰,「隧道開挖對節理岩體滲流行為影響之研究」,國立臺灣大學工學院土木工程學研究所,碩士論文,民國一百零一年。
4. 賴柏松,「不連續面先天異向性及應力異向性對開挖圍岩滲透特性之影響」,國立中央大學應用地質研究所,碩士論文,民國一百零六年。
5. Bandis, S., Lumsden, A. C. and Barton, N.R., 1981. Experimental studies of scale effects on the shear behavior of rock joints. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 18(1), 1-21.
6. Bandis, S.C., Lumsden, A.C. and Barton, N.R., 1983. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 20(6), 249-268.
7. Bandis, S.C., Barton, N.R. and Christianson, M., 1985. Application of joint behavior to rock mechanics problems. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 22(3), 121-140.
8. Figueiredo, B., Tsang, C. F., Rutqvist, J. and Niemi, A., 2015; A study of changes in deepfractured rock permeability due to coupled hydro-mechanical effects. International Journal Rock Mechanics and Mining Sciences, 79, 70-84.
9. Ivars, D.M., 2006. Water inflow into excavations in fractured rock—a three-dimensional hydro-mechanical numerical study. International Journal of Rock Mechanics and Mining Sciences, 43(5), 705-725.
10. Jing, L., 2003. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci, 40(3), 283–353.
11. Kirsch, 1898. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure, 42, 797–807.
12. Knatani, K., 1984. Distribution of directional data and fabric tensors. International Journal of Engineering Science, 22(2), 149-164.
13. Liu, J., Elsworth, D. and Brady, B. H., 1999. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. International Journal of Rock Mechanics and Mining Sciences, 36(5), 581-589.
14. Long, J. C. S., Remer, J. S., Wilson, C. R. and Witherspoon, P. A., 1982. Porous media equivalents for networks of discontinuous fractures. Water Resources. Research, 18(3), 645-658.
15. Min, K.B., Rutqvist, J., Tsang, C.F. and Jing, L., 2004. Stress-dependent permeability of fractured rock masses:a numerical study. International Journal of Rock Mechanics and Mining Sciences, 41, 1191-1210.
16. Oda, M., 1985. Permeability tensor for discontinuous rock masses. Geotechnique, 35(4), 483-495.
17. Oda, M., 1986. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 22(13), 1845-1856.
18. Olsson, R., Barton, N., 2001. An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38, 317-329.
19. Rutqvist, J., Stephansson, O., 2003. The role of hydromechanical couplinging fractured rock engineering. Hydrogeology Journal, 11, 7-40.
20. Snow, D.T., 1968. Rock fracture spacings, openings, and porosities. Journal of the Soil Mechanics and Foundations Division. by American Society of Civil Engineers, 96(SM1), 73-91.
21. Tran, D., Nghiem, L., and Buchanan, L. ,2005. An Overview of Iterative Coupling between Geomechanical Deformation and Reservoir Flow. International Thermal Operations and Heavy Oil Symposium. Calgary. SPE 97879.
22. Wei, Z.Q., Egger, P. and Descoeudres, F.,1995. Permeability predictions for jointed rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3):251-61.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔