跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪子睦
研究生(外文):Zih-Mu Hong
論文名稱:以電漿觸媒系統轉化甲烷及二氧化碳為液態產物之可行性研究
論文名稱(外文):Reforming of CH4 and CO2 to Liquid Products via Plasma Catalysis
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo-Bing Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:二氧化碳甲烷電漿觸媒全球暖化液態產物
外文關鍵詞:carbon dioxidemethaneplasma catalysisglobal warmingliquid products
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
工業革命後全球二氧化碳及其他溫室氣體之人為排放量大幅增加,造成全球暖化(Global Warming)。因此,如何有效地降低人為二氧化碳的排放量已成為近年來各國努力的目標。碳捕捉、再利用與封存(Carbon Capture, Utilization and Storage, CCUS)為目前各國積極開發的減碳技術,其中將二氧化碳轉化為有用之產物為碳再利用之一環,包括合成氣、甲醇及尿素等。本研究旨在研發具良好活性之觸媒,並與電漿反應器結合為一複合式反應器,應用於轉換CO2/CH4為液態產物程序,並分為三個階段:(一)研發同時具二氧化碳和甲烷轉化活性之觸媒、(二)開發觸媒電漿系統,並藉兩者之協同作用嘗試轉化為液態產物如醋酸和甲醇、(三)經由觸媒物化分析探討其反應機制,提升液態產物之選擇性。結果表明,電漿觸媒法具有轉化二氧化碳為單一液態產物之可行性,Cu/Al2O3 和Ni/Al2O3對於乙酸具有較高選擇性;而In/Al2O3對於甲醇具有較高選擇性,其甲醇選擇性可達20%,且In/Al2O3無論在熱催化或是電漿反應中皆表現出較佳之穩定性,另外In含量為8-10%時具有較佳之甲醇選擇性。而探討反應過程中所消耗之能源以及產物所能提供之能源時可發現,電漿觸媒系統對於二氧化碳之轉換能效較低,但由於可共同轉化全球化潛勢較高之甲烷,因此仍有助於溫室氣體減排。且液態產物具有成為能源來源之潛力,亦可作為另類儲能方式幫助能源轉型,故此法具有潛力幫助國內及全球之溫室氣體減量工作,同時為能源轉型提供一可行方向。
Since the industrial revolution, the global anthropogenic emissions of carbon dioxide and other greenhouse gases has been increasing significantly, causing global warming. Therefore, how to effectively reduce the emission of anthropogenic carbon dioxide has become the goal of many countries in recent years. Carbon Capture, Utilization and Storage (CCUS) is a carbon reduction technology actively developed by various countries. Conversion of carbon dioxide into useful products including synthesis gas, methanol and urea is one of the carbon recycling approach. This study aims to develop a catalyst with good activity and combine it with a plasma reactor as a hybrid system for the conversion of CO2/CH4 into a liquid product and the study is divided into three stages: (1) Preparation of the catalyst for the conversion of carbon dioxide and methane, (2) Development of a catalytic plasma system to convert CO2/CH4 into liquid products such as acetic acid and methanol. (3) Elucidation of mechanism through catalytic physicochemical analysis and enhancement of selectivity. The results show that the plasma catalysis has the feasibility of converting CO2 and CH4 into a single liquid product. Cu/Al2O3 and Ni/Al2O3 have higher selectivity to acetic acid, while In/Al2O3 has a higher selectivity to methanol. In/Al2O3 exhibits better stability in both thermal and plasma reactions. Regarding the energy consumption of the process, it can be found that the energy efficiency of converting CO2 and CH4 is still low, but the liquid product has the potential as an energy source, so this method is still feasible and contributes to domestic and global greenhouse gas reduction work.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 溫室氣體之種類與來源 3
2.2 二氧化碳之轉化技術 6
2.2.1二氧化碳再利用之產物 6
2.3 電漿技術 7
2.3.1 何謂電漿 7
2.3.2 非熱電漿 9
2.4二氧化碳與甲烷共同轉化 13
2.4.1 觸媒催化 13
2.4.2 電漿合成 15
2.4.3 電漿觸媒合成 16
2.4.4 電漿轉化之優勢 18
2.5 介電質放電系統 19
2.5.1 電漿模擬 20
第三章 研究設備與方法 22
3.1 研究流程與架構 22
3.2 實驗藥品、氣體與設備 24
3.2.1 實驗藥品 24
3.2.2 實驗氣體 25
3.2.2 實驗設備 25
3.3 觸媒備製 28
3.4 觸媒之物化分析 29
3.5 重組實驗 32
3.5.1 反應設備 32
3.5.2 熱催化方法及實驗配置 33
3.5.3 電漿觸媒測試方法及實驗配置 35
3.6 實驗結果之計算 36
第四章 結果與討論 38
4.1 以觸媒熱催化進行反應 38
4.1.1 以含浸法製備之觸媒 38
4.1.2觸媒種類對於轉換效率之影響 40
4.1.3溫度對於轉換效率之影響 42
4.2 以電漿觸媒法進行反應 45
4.2.1 載氣對轉化效率之影響 45
4.2.2 施加電壓對於轉化效率之影響 46
4.2.3 進氣流率對於轉換效率之影響 56
4.3 反應機制分析 59
4.4 能量效率評估 64
第五章 結論與建議 74
5.1 結論 74
5.2 建議 75
參考文獻 76
Alami D., “Environmental applications of rare-Earth manganites as catalysts: a comparative study”, Environmental Engineering Research, 18:211-219 (2013).
Aerts R., Tu X., Van Gaens W., Whitehead J. C., Bogaerts A., “Gas purification by nonthermal plasma: a case study of ethylene”, Environmental Science & Technology, 47(12):6478-6485 (2013).
Bertinchamps F., Treinen M., Eloy P., Dos Santos A. M., Mestdagh M. M., Gaigneaux E. M., “Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs”, Applied Catalysis B: Environmental, 70:360-369 (2007).
Barbero B. P., Gamboa J. A., Cadús L. E., “Synthesis and characterisation of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds”, Applied Catalysis B : Environmental, 65(1-2):21-30 (2006).
Blanch-Raga N., Palomares A. E., , Martínez-Triguero J., Valencia S., “Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation”, Applied Catalysis B: Environmental, 187:90-97 (2016).
Chang J. S., Lawless P. A., Yamamoto, T., “Corona discharge processes”, Institute of Electrical and Electronics Engineers, 19: 1152-1166 (1991).
Corella J., Toledo J. M., Padilla A. M., “On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons”, Applied Catalysis B: Environmental, 27:243-256 (2000).
Connell M., Norman A. K., HuÈttermann C. F., Morris M. A., “Catalytic oxidation over lanthanum-transitionmetal perovskite materials”, Catalysis Today, 47:123-132 (1999).
Chen H. L., Lee H. M., Chen S. H., Chao Y., Chang M. B., “Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects”, Applied Catalysis B : Environmental, 85(1-2):1-9 (2008).
Chen S. X., Wang Y., Jia A. P., Liu H. H., Luo M. F., Lu J. Q., “Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts”, Applied Surface Science, 307:178-188 (2014).
Ding Y., Wang S., Zhang L., Chen Z., Wang M., Wang S., “A facile method to promote LaMnO3 perovskite catalyst for combustion of methane”, Catalysis Communications, 97:88-92 (2017).
Eliasson B., Kogelschatz U., “Modeling and applications of silent discharge plasmas”, IEEE Transactions on Plasma Science, 19(2):309-323 (1991).
Evans D., Rosocha L. A., Anderson G. K., Coogan J. J., Kushner M. J., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 74(9):5378-5386 (1993).
Everaert K., Baeyens J., “Catalytic combustion of volatile organic compounds”, Journal of Hazardous Materials B, 109:113-119 (2004).
Gao P., Li S., Bu X., Dang S., Liu Z., Wang H., Sun Y., “Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst”, Nature Chemistry, 9(10), 1019–1024 (2017).
Goldschmidt V. M., “Die gesetze der krystallochemie. Naturwissenschaften”, 14(21):477-485 (1926).
Guo Y. F., Ye D. Q., Chen K. F., He J. C., Chen W. L., “Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ”, Journal of Molecular Catalysis A: Chemical, 245(1):93-100 (2006).
Guaitella O., Thevenet F., Puzenat E., Guillard C., Rousseau A., “C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure”, Applied Catalysis B: Environmental, 80(3):296-305(2008).
Huang B., Lei C., Wei C., Zeng G., “Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies”, Environment International, 71:118-138 (2014).
Indarto A., Choi J. W., Lee H., Song H. K., “Decomposition of greenhouse gases by plasma”, Environmental Chemistry Letters, 6:215-222 (2008).
Ivanova S., Pérez A., Centeno M. Á., Odriozola J. A., “Structured catalysts for volatile organic compound removal”, New and Future Developments in Catalysis Catalysis for Remediation and Environmental Concerns, 233-256 (2013).
Jun A., Kim J., Shin J., Kim G.,“Perovskite as a cathode material: A review of its Role in solid‐oxide fuel cell technology”, ChemElectroChem, 3(4):511-530 (2016).
Jiang N., Hu J., Li J., Shang K., Lu N., Wu Y., “Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas”, Applied Catalysis B: Environmental, 184:355-363 (2016).
Kulazynski M., van Ommen J. G.,“Cataltyic combustion of trichloroethylene over TiO2-SiO2 supported catalysts”, Applied Catalysis B:Environmental, 36: 239-247 (2002).
Kim H. H., Ogata A., Futamura S.,“Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis”, IEEE Transactions on Plasma Science, 34(3):984-995 (2006).
Kaddouri K., Gelin P., Dupont N., “Methane catalytic combustion over La–Ce–Mn–O-perovskite prepared using dielectric heating”, Catalysis Communications, 10:1085-1089 (2009).
Karuppiah J., Sivachandiran L., Karvembu R., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol”, Chemical Engineering Journal, 165(1): 194-199 (2010) .
Kim C. H., Qi G., Dahlberg K., Li W., “Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science”, 327(5973):1624-1627 (2010).
Károlyi J., Németh M., Evangelisti C., Sáfrán G., Schay Z., Horváth A., Somodi F., “Carbon dioxide reforming of methane over Ni–In/SiO2 catalyst without coke formation,” Journal of Industrial and Engineering Chemistry, 58, 189–201 (2018).
Karuppiah J., Reddy E. L., Reddy P. M. K., Ramaraju B., Subrahmanyam C., “Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene”, International Journal of Environmental Science and Technology, 11(2): 311-318 (2014).
Louis A. R., Graydon K. A., and John J. C., “Plasma remediation of trichloroethylene in silent discharge plasmas”, Journal of Applied Physics, 5378 (1993).
Liu Y., Shao M., Lu S., Chang C. C., Wang J. L., Fu L., “Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II”, Atmospheric Environment, 42(25):6261-6274 (2008).
Li H., Lu G., Dai Q., Wang Y., Guo Y., Guo Y., “Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres”, Applied Catalysis B: Environmental, 102(3): 475-483 (2011).
Liu G., Li J., Yang K., Tang W., Liu H., Yang J., Chen Y., “Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1− xCexMnO3 catalysts”, Particuology, 19:60-68 (2015).
Labhasetwar N., Saravanan G., Megarajan S. K., Manwar N., Khobragade R., Doggali P., Grasset F., “Perovskite-type catalytic materials for environmental applications”, Science and Technology of Advanced Materials, 16(3):036002 (2015).
Marinova Y., Hohemberger J. M., Cordoncillo E., Escribano P., Carda J. B., “Study of solid solutions, with perovskite structure, for application in the field of the ceramic pigments”, Journal of the European Ceramic Society, 23(2):213-220 (2003).
Miranda B., Di’az E., Ordo’nez S., Di’ez F. V., “Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study”, Catalysis Communications, 7:945-949 (2006).
Meyer C. I., Borgna A., Monzon A., Garetto T. F., “Kinetic study of trichloroethylene combustion on exchanged zeolites catalysts”, Journal of Hazardous Materials, 190:903-908 (2011).
Nehra V., Kumar A., Dwivedi H. K., “Atmospheric non-thermal plasma source”, International Journal of Engineering, 2:53-68 (2008).
Neyts E. C., Bogaerts A., “Understanding plasma catalysis through modelling and simulation—a review”,  Journal of Physics D: Applied Physics, 47(22): 224010 (2014).
Norsic C., Tatibouët J. M., Batiot-Dupeyrat C., Fourré E., “Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3”, Chemical Engineering Journal, 304: 563-572 (2016).
Nguyen Dinha M. T., Giraudon J. M., Vandenbroucke A. M., Morent R., De Geyter N., Lamonier J. F., “Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air”, Journal of Hazardous Materials, 314:88-94 (2016).
Ogata A., Ito D., Mizuno K., Kushiyama S., Gal A., Yamamoto T., “Effect of coexisting components on aromatic decomposition in a packed - bed plasma reactor”, Applied Catalysis A : General, 236:9-15 (2002).
Ojala S., Lassi U., Peramaki P., Keiski R. L., “Effect of process parameters on catalytic incineration of solvent emissions”, Journal of Automated Methods & Management in Chemistry, 75:41-91 (2008).
Prager L., Langguth H., Rummel S., Mehnert R., “Electron beam degradation of chlorinated hydrocarbons in air”, Radiation Physics and Chemistry, 46(4-6):1137-1142 (1995).
Ramakers M., Michielsen I., Aerts R., Meynen V., Bogaerts A., “Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge”, Plasma Processes and Polymers, 12(8), 755–763 (2015).
Rehmani M. H., Reisslein M., Rachedi A., Erol-Kantarci M., Radenkovic M., “Integrating Renewable Energy Resources Into the Smart Grid: Recent Developments in Information and Communication Technologies”, IEEE Transactions on Industrial Informatics, 14(7), 2814–2825 (2018).
Serykh A. I., “Low-dimensional indium oxo-species on the surface of In2O3/Al2O3 catalytic material: The sites of dissociative adsorption of hydrogen”, The Journal of Physical Chemistry C, 120(38) (2016).
Spinicci R., Faticanti M., Marini P., De Rossi S., Porta P., “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, Journal of Molecular Catalysis A : Chemical, 197(1-2): 147-155(2003).
Shang S., Liu G., Chai X., Tao X., Li X., Bai M., Yin Y., “Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet”, Catalysis Today, 148(3): 268-274 (2009).
Snoeckx R., Zeng Y. X., Tu X., Bogaerts A., “Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge”, RSC Advances, 5(38), 29799–29808 (2017).
Sui Z. J., Vradman L., Reizner I., Landau M. V., Herskowitz M., “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation”, Catalysis Communications, 12:1437-1441 (2011).
Sun Y., Zhou L., Zhang L., Sui, H., “Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal”, Journal of Environmental Sciences, 24(5): 891-896 (2012).
Sultana S., Vandenbroucke A. M., Leys C., De Geyter N., Morent R. “Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review”, Catalysts, 5(2): 718-746 (2015).
Tichenor A., Palazzolo, M. A., “Destruction of volatile organic compounds via catalytic incineration.”, Environment Progress, 6:172-176 (1987).
Trinh H. Q., Mok Y. S., “Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts”, Chemical Engineering Journal, 251:199-206(2014).
Van Durme J., Dewulf J., Leys C., Van Langenhove H., “Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment” : A review. Applied Catalysis B : Environmental, 78(3-4):324-333 (2008).
Vandenbroucke A. M., Mora M., Jiménez-Sanchidrián C., Romero-Salguero F. J., De Geyter N., Leys C., Morent R., “TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst”, Applied Catalysis B: Environmental, 156-157:94-100 (2014).
Vandenbroucke, A. M., Morent, R., De Geyter, N., Leys, C, “Non-thermal plasmas for non-catalytic and catalytic VOC abatement,” Journal of hazardous materials, 195:30-54 (2011).
Wang B., Chi C., Xu M., Wang C., Meng D., “Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge”, Chemical Engineering Journal, 322:679-692 (2017).
Wang. W., Snoeckx. R., Zhang. X., Cha M. S., Bogaerts. A., “Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: The bigger plasma chemistry picture”, The Journal of Physical Chemistry C, 122(16), 8704–8723 (2018).
Wilcox E, Roberts G.W., Spivey J.J., “Direct catalytic formation of acetic acid from CO2 and methane”, Catalysis Today, 88:83-90 (2003).
Wu J., Xia Q., Wang H., Li Z., “Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor”, Applied Catalysis B: Environmental, 156:265-272 (2014).
Zhang-Steenwinkel Y., Beckers J., Bliek A., “Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides”, Applied Catalysis A: General, 235:79-92 (2002).
Zhu J., Thomas A., “Perovskite-type mixed oxides as catalytic material for NO removal”, Applied Catalysis B : Environmental, 92(3-4):225-233 (2009).
Zhang C., Hu W., Wang C., Guo Y., Guo Y., Lu G., Baylet A., Giroir-Fendler A., “The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission”, Applied Catalysis B: Environmental, 134-135:310- 315 (2013).
Zhang C., Wang C., Zhan W., Guo Y., Guo Y., Lua G., Baylet A., Giroir-Fendlerb A., “Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts”, Applied Catalysis B: Environmental, 129:509-516 (2013).
Zheng C., Zhu X., Gao X., Liu L., Chang Q., Luo Z., Cen K., “Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor”, Journal of Industrial and Engineering Chemistry, 20(5):2761-2768 (2014).
Zhang C., Guo Y., Guo Y., Lu G., Boreave A., Retailleau L., Baylet A., Giroir-Fendler, A., “LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene”, Applied Catalysis B: Environmental, 148-149:490-498 (2014).
Zhang J., Tan D., Meng Q., Weng X., Wu Z., “Structural modification of LaCoO3 perovskite for oxidation reactions: The synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance”, Applied Catalysis B: Environmental, 172-173:18-26 (2015).
Zhang C., Wang C., Hua W., Guo Y., Lu G., Gil S., Giroir-Fendler A., “Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride”, Applied Catalysis B: Environmental, 186:173-183 (2016).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊