( 您好!臺灣時間:2021/04/19 23:56
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Ting-Fu Zhang
論文名稱(外文):Surface-enhanced resonance Raman scattering on micro-nanostructured InGaN quantum wells
指導教授(外文):Kun-Yu Lai
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
In recent years, the advancement of science and technology has improved the level of human life.In order to maintain a good quality of life, it has also promoted the development of biotechnology and medical care,and made the biomedical science become a hot topic of research in the world.
To get the reliable signals from sparse single molecules in low concentration is the final goal of biosensors. In order to achieve it, in this study, under the principle of surface-enhanced resonance raman scattering(SERRS), InGaN quantum wells with high refractive index and high chemical stability on the semiconductor are deposited on ZnO nanorod which are epitaxial grown in low-cost way by MOCVD and it has a rough and nanopyramid-like surface with Au nanoparticles. And the Rhodamine6G a kind of fluorescent molecules are used as the analyte to analyze the application and potential of this unique 2D nanostructured substrate in biosensing.
The performance of R6G on the Raman spectrum reflects the enormous advantage of this unique structure. In addition to an EF value is high to 106 and limit of detection is down to
10-12 that is very low concentration of molecular, it also has a large area with the “hot spots” which are evenly distributed on surface, and low-cost of production, the simple and convenient of measurement, the stability of enhancement , the small, thin and light of the volume, there is great potential in biosensing and single molecule detection.
論文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
第一章、緒論 1
1.1表面增強共振型拉曼散射的源起與發展 1
1.2氮化物量子井應用於表面增強共振型拉曼散射的優勢應用 3
1.3研究動機與章節架構 5
第二章、實驗原理、方法與儀器 7
2.1表面增強共振型拉曼散射的原理 7
2.2奈米氮化銦鎵量子井的磊晶成長 14
2.3拉曼光譜儀的量測原理與架構 21
第三章、分析與討論 22
3-1入射波長對拉曼頻譜的影響 22
3.2光致激發及拉曼散射的光譜分析 25
3.3以R6G螢光分子的驗證效果:偵測敏感度與解析度 29
第四章、結論與未來發展 42
4.1結論 42
4.2未來發展 43
參考文獻 44
1. Lombardi, J. R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss. 205, 105-120 (2017).
2. Mao, P. et al. Broadband single molecule SERS detection designed by warped optical spaces. Nat Commun. 9, 5428 (2018).
3. Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med. 7, 271ra7 (2015).
4. S. Dick, S. & Bell, S. E. J. Quantitative surface-enhanced Raman spectroscopy of single bases in oligodeoxynucleotides. Faraday Discuss. 205, 517-536 (2017).
5. Hajdukova, N., Prochazka, M., Stepanek, J. & Spirkov, M. Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing. Colloids and Surfaces A: Physicochem. Eng. Aspects. 301, 264-270 (2007).
6. Zhang. X. et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304-10309 (2006).
7. Schmidt, M. S., Hübner, J. & Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24, OP11–OP18 (2012).
8. Leem, J., Wang, M. C., Kang, P. & Nam, S. W. Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684-7690 (2015).
9. Williamson, T. L. et al. Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J. Phys. Chem. B 109, 20186-20191 (2005).
10. Kaminska, A. et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications. J. Mater. Chem. 21, 8662-8669 (2011).
11. Ambacher, O. et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222-3233 (1999).
12. Ganatra, R. & Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 8, 4074-4099 (2014).
13. Ohkawa, K. et al. 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth. 343, 13-16 (2012).
14. Mukai, T. & Nakamura, S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 38, 5735-5739 (1999).
15. Ru, E. C. L. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam (2009).
16. Hus, J.-W. et al. Bottom‐up nano‐heteroepitaxy of wafer‐scale semipolar GaN on (001) Si. Adv. Mater. 27, 4845-4850 (2015).
17. Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004).
18. Chien, F.-C. et al. Nitride-based microarray biochips: A new route of plasmonic imaging. ACS Appl. Mater. Interfaces. 10, 39898-39903 (2018).
19. D. Gaspa, D. et al. Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci Rep. 3, 1469 (2013).
20. Messinger, B. J., Ulrich von Raben, K., Chang, R. K. & Barber, P. W. Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649-657 (1981).
21. Terakawa, M., Tanaka, Y., Obara, G., Sakano, T. & Obara, M. Randomly-grown high-dielectric-constant ZnO nanorods for near-field enhanced Raman scattering. Appl. Phys. A 102, 661-665 (2011).
22. Chapman, M. et al. Structural evolution of ultrathin films of rhodamine 6G on glass. J. Phys. Chem. C 120, 8289-8297 (2016).
23. Lai, K. Y. et al. Effect of m-plane GaN substrate miscut on InGaN/GaN quantum well growth. J. Crystal Growth 312, 902-905 (2010).
24. Northrup, J. E. & Romano, L. T. Surface energetics, pit formation, and chemical ordering in InGaN alloys. Appl. Phys. Lett. 74, 2319-2321 (1999).
25. Dieringer, J. A. et al. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849-854 (2009).
26. Cong, S. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun. 6, 7800 (2015).
27. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phy. Rev. Lett. 96, 113002 (2006).
28. Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834-840 (2014).
29. Sadegh, N., Khadem, H. & Tavassoli, S. H. High Raman-to-fluorescence ratio of rhodamine 6G excited with 532 nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles. Appl. Opt. 55, 6125-6129 (2016).
30. Pryce, I. M., Koleske, D. D., Fischer, A. J. & Atwater H. A. Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett. 96, 153501 (2010).
31. S. Lazic, et al. Resonant Raman scattering in strained and relaxed InGaN/GaN multi-quantum wells. Appl. Phys. Lett. 86, 061905 (2005).
32. Song, J., Chen, D. & Han, J. Understanding of the mechanism of pulsed NH3 growth in metalorganic chemical vapor deposition. J. Cryst. Growth. 415, 127-131 (2015).
33. Sharvani, S., Upadhayaya, K., Gayatri Kumari, G., Narayana. C. & Shivaprasad, S. M. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network. Nanotechnology 26, 465701 (2015).
34. Zhao, Y., Qin, S.-J., Peng, F. & Pan, G.-B. Electrodeposition of hierarchical Ag on nanoporous GaN and its surface enhanced Raman scattering application. Mater. Lett. 153, 148-151 (2015).
35. Murshid, N., Gourevich, I., Coombs, N. & Kitaev, V. Gold plating of silver nanoparticles for superior stability and preserved plasmonic and sensing properties. Chem. Commun. 49, 11355-11357 (2013).
36. Kleinman, S. L., Frontiera, R. R., Henry, A.-I., Dieringer, J. A. & Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21-36 (2013).
37. Zrimsek, A. B., Wong, N. L. & Van Duyne, R. P. Single molecule surface-enhanced Raman spectroscopy: A critical analysis of the bianalyte versus isotopologue proof. J. Phys. Chem. C 120, 5133-5142 (2016).
38. Pieczonka, N. P. W. & Aroca, R. F. Single molecule analysis by surfaced-enhanced Raman scattering. Chem. Soc. Rev 37, 946-954 (2008).
39. Liu, H. et al. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep. 1, 112 (2011).
40. Maruyama, Y., Ishikawa, M. & Futamata, M. Thermal activation of blinking in SERS signal. J. Phys. Chem. B 108, 673-678 (2004).
41. Wang, Z. & Rothberg, L. J. Origins of blinking in single-molecule Raman spectroscopy. Sci Rep. 2005, 3387-3391 (2005).
42. Emory, S. R. et al. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss. 132, 249-259 (2006).
43. Zou, J., Kotchetkov, D., Balandin, A. A., Florescub, D. I. & Pollak, F. H. Thermal conductivity of GaN films: Effects of impurities and dislocations. J. Appl. Phys. 92, 2534-2539 (2002).
44. Dick, L.A. et al. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J. Phys. Chem. B 106, No.4, 853-860(2002)
45. Bankowska, M. et al. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem. C 120, 1841-1846(2016)
46. Traci, R.J. et al. Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 104, 10549(2004)
47. Catarina, M., Rahul, T., Richrd, O., Sumeet, M. Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 13(2016)

48. Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag 4, 396 (1902)
49. Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces. J. Opt. Soc. Am. 31, 213 (1941)
50. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668(2003)
51. Kreibig, U., Vollmer, M. Optical Properties of Metal Clusters. Vol. 25. (Springer, Berlin, 1995)
52. 陳瑤真,“表面增強拉曼散射光譜應用於生物單分子偵測,” 國立交通大學,碩士論文,民國九十三年。
53. Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface - Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986)
54. Juan, F.W. et al. The role of charge-transfer states of the metal-adsorbatecomplex in surface-enhanced Raman scattering. J. Chem. Phys, 112, 7669(2000)
55. Seshan, K., Handbook Of Thin Film Deposition Processes And Techniques(Noyes Publications/William Andrew Pub.,2002)
56. Zhu, F.Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotech. Vol. 25, No. 8(2014)
57. 網路資料: Physics and Astronomy, Surface Enhanced Raman Spectroscopy Introduction. 取自https://newton.ex.ac.uk/research/biomedical-old/optics/sers.html
58. 網路資料: Rhodamine 6G https://www.sciencedirect.com/topics/chemistry/rhodamine-6g
59. Strommen, D. P., Nakamoto, K. Resonance raman spectroscopy., J. Chem. Educ., 54
60. 氮化銦鎵奈米量子井的表面增益拉曼散射分析;Study of Surface-Enhanced Raman Scattering on Nano-structured InGaN Quantum wells王菘郁; Wang, Song-Yu , 2018-07-23
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔